Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Nov 10:2023.07.12.548762.
doi: 10.1101/2023.07.12.548762.

FoxP3 recognizes microsatellites and bridges DNA through multimerization

FoxP3 recognizes microsatellites and bridges DNA through multimerization

Wenxiang Zhang et al. bioRxiv. .

Update in

Abstract

FoxP3 is a transcription factor (TF) essential for development of regulatory T cells (Tregs), a branch of T cells that suppress excessive inflammation and autoimmunity 1-5 . Molecular mechanisms of FoxP3, however, remain elusive. We here show that FoxP3 utilizes the Forkhead domain--a DNA binding domain (DBD) that is commonly thought to function as a monomer or dimer--to form a higher-order multimer upon binding to T n G repeat microsatellites. A cryo-electron microscopy structure of FoxP3 in complex with T 3 G repeats reveals a ladder-like architecture, where two double-stranded DNA molecules form the two "side rails" bridged by five pairs of FoxP3 molecules, with each pair forming a "rung". Each FoxP3 subunit occupies TGTTTGT within the repeats in the manner indistinguishable from that of FoxP3 bound to the Forkhead consensus motif (FKHM; TGTTTAC). Mutations in the "intra-rung" interface impair T n G repeat recognition, DNA bridging and cellular functions of FoxP3, all without affecting FKHM binding. FoxP3 can tolerate variable "inter-rung" spacings, explaining its broad specificity for T n G repeat-like sequences in vivo and in vitro . Both FoxP3 orthologs and paralogs show similar T n G repeat recognition and DNA bridging. These findings thus reveal a new mode of DNA recognition that involves TF homo-multimerization and DNA bridging, and further implicates microsatellites in transcriptional regulation and diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources