Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Nov 30;14(47):10700-10709.
doi: 10.1021/acs.jpclett.3c02641. Epub 2023 Nov 21.

Redox Hopping in Metal-Organic Frameworks through the Lens of the Scholz Model

Affiliations
Review

Redox Hopping in Metal-Organic Frameworks through the Lens of the Scholz Model

Minliang Yan et al. J Phys Chem Lett. .

Abstract

Initially proposed by Lovric and Scholz to explain redox reactions in solid-phase voltammetry, the Scholz model's applications have expanded to redox reactions in various materials. As an extension of the Cottrell equation, the Scholz model enabled the quantification of electron hopping and ion diffusion with coefficients, De and Di, respectively. Research utilizing the Scholz model indicated that, in most cases, a huge bottleneck results from the ion diffusion which is slower than electron hopping by orders of magnitude. Therefore, electron and ion motion can be tuned and optimized to increase the charge transport and conductivity through systematic investigations guided by the Scholz model. The strategy may be extended to other solid-state materials in the future, e.g., battery anodes/cathodes. In this Perspective, the applications of the Scholz model in different materials will be discussed. Moreover, the limitations of the Scholz model will also be introduced, and viable solutions to those limitations discussed.

PubMed Disclaimer