Open Source Antibiotics: Simple Diarylimidazoles Are Potent against Methicillin-Resistant Staphylococcus aureus
- PMID: 37991879
- PMCID: PMC10714399
- DOI: 10.1021/acsinfecdis.3c00286
Open Source Antibiotics: Simple Diarylimidazoles Are Potent against Methicillin-Resistant Staphylococcus aureus
Abstract
Antimicrobial resistance (AMR) is widely acknowledged as one of the most serious public health threats facing the world, yet the private sector finds it challenging to generate much-needed medicines. As an alternative discovery approach, a small array of diarylimidazoles was screened against the ESKAPE pathogens, and the results were made publicly available through the Open Source Antibiotics (OSA) consortium (https://github.com/opensourceantibiotics). Of the 18 compounds tested (at 32 μg/mL), 15 showed >90% growth inhibition activity against methicillin-resistant Staphylococcus aureus (MRSA) alone. In the subsequent hit-to-lead optimization of this chemotype, 147 new heterocyclic compounds containing the diarylimidazole and other core motifs were synthesized and tested against MRSA, and their structure-activity relationships were identified. While potent, these compounds have moderate to high intrinsic clearance and some associated toxicity. The best overall balance of parameters was found with OSA_975, a compound with good potency, good solubility, and reduced intrinsic clearance in rat hepatocytes. We have progressed toward the knowledge of the molecular target of these phenotypically active compounds, with proteomic techniques suggesting TGFBR1 is potentially involved in the mechanism of action. Further development of these compounds toward antimicrobial medicines is available to anyone under the licensing terms of the project.
Keywords: Drug discovery; antibacterials; antibiotics; bioactive molecules; open science; organic synthesis.
Conflict of interest statement
The authors declare no competing financial interest.
Figures








References
-
- Cassini A.; Högberg L. D.; Plachouras D.; Quattrocchi A.; Hoxha A.; Simonsen G. S.; Colomb-Cotinat M.; Kretzschmar M. E.; Devleesschauwer B.; Cecchini M.; Ouakrim D. A.; Oliveira T. C.; Struelens M. J.; Suetens C.; Monnet D. L.; Strauss R.; Mertens K.; Struyf T.; Catry B.; Latour K.; Ivanov I. N.; Dobreva E. G.; Tambic Andraševic A.; Soprek S.; Budimir A.; Paphitou N.; Žemlicková H.; Schytte Olsen S.; Wolff Sönksen U.; Märtin P.; Ivanova M.; Lyytikäinen O.; Jalava J.; Coignard B.; Eckmanns T.; Abu Sin M.; Haller S.; Daikos G. L.; Gikas A.; Tsiodras S.; Kontopidou F.; Tóth Á.; Hajdu Á.; Guólaugsson Ó.; Kristinsson K. G.; Murchan S.; Burns K.; Pezzotti P.; Gagliotti C.; Dumpis U.; Liuimiene A.; Perrin M.; Borg M. A.; de Greeff S. C.; Monen J. C. M.; Koek M. B. G.; Elstrøm P.; Zabicka D.; Deptula A.; Hryniewicz W.; Caniça M.; Nogueira P. J.; Fernandes P. A.; Manageiro V.; Popescu G. A.; Serban R. I.; Schréterová E.; Litvová S.; Štefkovicová M.; Kolman J.; Klavs I.; Korošec A.; Aracil B.; Asensio A.; Pérez-Vázquez M.; Billström H.; Larsson S.; Reilly J. S.; Johnson A.; Hopkins S. Attributable Deaths and Disability-adjusted Life-years Caused by Infections with Antibiotic-resistant Bacteria in the EU and the European Economic Area in 2015: a Population-level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. 10.1016/S1473-3099(18)30605-4. - DOI - PMC - PubMed
-
- CDC . COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious, Diseases, Division of Healthcare Quality, Promotion: Hyattsville, MD, June 2022. 10.15620/cdc:117915 (accessed January 6, 2022). - DOI
-
- World Health Organization . Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report, June 9, 2021. https://www.who.int/publications/i/item/9789240027336 (accessed January 6, 2022).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials