Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase
- PMID: 37992069
- PMCID: PMC10664910
- DOI: 10.1371/journal.pone.0294571
Sensing chemical-induced genotoxicity and oxidative stress via yeast-based reporter assays using NanoLuc luciferase
Abstract
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter (PRNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter (PTRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated PRNR3-linked yNluc and PTRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals.
Copyright: © 2023 Shichinohe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures






References
-
- Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. DNA Repair and Mutagenesis 2nd Edition. Washington, DC.: American Society for Microbiology Press; 2005.
-
- Afanassiev V, Sefton M, Anantachaiyong T, Barker G, Walmsley R, Wölfl S. Application of yeast cells transformed with GFP expression constructs containing the RAD54 or RNR2 promoter as a test for the genotoxic potential of chemical substances. Mutat Res. 2000;464(2):297–308. doi: 10.1016/s1383-5718(99)00209-0 . - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases