Rapidly determining the 3D structure of proteins by surface-enhanced Raman spectroscopy
- PMID: 37992170
- PMCID: PMC10665000
- DOI: 10.1126/sciadv.adh8362
Rapidly determining the 3D structure of proteins by surface-enhanced Raman spectroscopy
Abstract
Despite great advances in protein structure analysis, label-free and ultrasensitive methods to obtain the natural and dynamic three-dimensional (3D) structures are still urgently needed. Surface-enhanced Raman spectroscopy (SERS) can be a good candidate, whereas the complexity originated from the interactions between the protein and the gradient surface electric field makes it extremely challenging to determine the protein structure. Here, we propose a deciphering strategy for accurate determination of 3D protein structure from experimental SERS spectra in seconds by simply summing SERS spectra of isolated amino acids in electric fields of different strength with their orientations in protein. The 3D protein structure can be reconstructed by comparing the experimental spectra obtained in a well-defined gap-mode SERS configuration with the simulated spectra. The gradient electric field endows SERS with a unique advantage to section biomolecules with atomic precision, which makes SERS a competent tool for monitoring biomolecular events under physiological conditions.
Figures





Similar articles
-
Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis.Acc Chem Res. 2016 Dec 20;49(12):2725-2735. doi: 10.1021/acs.accounts.6b00384. Epub 2016 Dec 8. Acc Chem Res. 2016. PMID: 27993003 Free PMC article.
-
Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond.Analyst. 2018 Aug 20;143(17):3990-4008. doi: 10.1039/c8an00606g. Analyst. 2018. PMID: 30059080 Review.
-
Aromatic amino acids providing characteristic motifs in the Raman and SERS spectroscopy of peptides.J Phys Chem B. 2008 Jul 31;112(30):9158-64. doi: 10.1021/jp8025732. Epub 2008 Jul 9. J Phys Chem B. 2008. PMID: 18610961
-
Direct detection of DNA using 3D surface enhanced Raman scattering hotspot matrix.Electrophoresis. 2019 Aug;40(16-17):2104-2111. doi: 10.1002/elps.201900009. Epub 2019 Mar 19. Electrophoresis. 2019. PMID: 30861157
-
Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research.Analyst. 2024 Apr 29;149(9):2526-2541. doi: 10.1039/d4an00272e. Analyst. 2024. PMID: 38623605 Review.
Cited by
-
Plasmonic trimers designed as SERS-active chemical traps for subtyping of lung tumors.Nat Commun. 2024 Jul 12;15(1):5855. doi: 10.1038/s41467-024-50321-0. Nat Commun. 2024. PMID: 38997298 Free PMC article.
-
SERS nose arrays based on a signal differentiation approach for TNT gas detection.Commun Chem. 2025 Aug 18;8(1):250. doi: 10.1038/s42004-025-01656-2. Commun Chem. 2025. PMID: 40826282 Free PMC article.
-
Heat generation in spatially confined solids through electronic light scattering.Nanophotonics. 2025 Jun 19;14(14):2411-2418. doi: 10.1515/nanoph-2025-0118. eCollection 2025 Jul. Nanophotonics. 2025. PMID: 40687572 Free PMC article.
-
From Bulk to Single Molecules: Surface-Enhanced Raman Scattering of Cytochrome C Using Plasmonic DNA Origami Nanoantennas.Nano Lett. 2024 Jun 12;24(23):6916-6923. doi: 10.1021/acs.nanolett.4c00834. Epub 2024 Jun 3. Nano Lett. 2024. PMID: 38829305 Free PMC article.
-
Biophysical and spectroscopical insights into structural modulation of species in the aggregation pathway of superoxide dismutase 1.Commun Chem. 2025 Jan 28;8(1):22. doi: 10.1038/s42004-025-01421-5. Commun Chem. 2025. PMID: 39875596 Free PMC article.
References
-
- Cao L., Coventry B., Goreshnik I., Huang B., Sheffler W., Park J. S., Jude K. M., Marković I., Kadam R. U., Verschueren K. H. G., Verstraete K., Walsh S. T. R., Bennett N., Phal A., Yang A., Kozodoy L., DeWitt M., Picton L., Miller L., Strauch E.-M., DeBouver N. D., Pires A., Bera A. K., Halabiya S., Hammerson B., Yang W., Bernard S., Stewart L., Wilson I. A., Ruohola-Baker H., Schlessinger J., Lee S., Savvides S. N., Garcia K. C., Baker D., Design of protein-binding proteins from the target structure alone. Nature 605, 551–560 (2022). - PMC - PubMed
-
- Chen H., Simoska O., Lim K., Grattieri M., Yuan M., Dong F., Lee Y. S., Beaver K., Weliwatte S., Gaffney E. M., Minteer S. D., Fundamentals, applications, and future directions of Bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020). - PubMed
-
- Sesterhenn F., Yang C., Bonet J., Cramer J. T., Wen X., Wang Y., Chiang C.-I., Abriata L. A., Kucharska I., Castoro G., Vollers S. S., Galloux M., Dheilly E., Rosset S., Corthésy P., Georgeon S., Villard M., Richard C.-A., Descamps D., Delgado T., Oricchio E., Rameix-Welti M.-A., Más V., Ervin S., Eléouët J.-F., Riffault S., Bates J. T., Julien J.-P., Li Y., Jardetzky T., Krey T., Correia B. E., De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science 368, (2020). - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous