Detecting host responses to microbial stimulation using primary epithelial organoids
- PMID: 37992398
- PMCID: PMC10730191
- DOI: 10.1080/19490976.2023.2281012
Detecting host responses to microbial stimulation using primary epithelial organoids
Abstract
The intestinal epithelium is constantly exposed to microbes residing in the lumen. Traditionally, the response to microbial interactions has been studied in cell lines derived from cancerous tissues, e.g. Caco-2. It is, however, unclear how the responses in these cancer cell lines reflect the responses of a normal epithelium and whether there might be microbial strain-specific effects. To address these questions, we derived organoids from the small intestine from a cohort of healthy individuals. Culturing intestinal epithelium on a flat laminin matrix induced their differentiation, facilitating analysis of microbial responses via the apical membrane normally exposed to the luminal content. Here, it was evident that the healthy epithelium across multiple individuals (n = 9) demonstrates robust acute both common and strain-specific responses to a range of probiotic bacterial strains (BB-12Ⓡ, LGGⓇ, DSM33361, and Bif195). Importantly, parallel experiments using the Caco-2 cell line provide no acute response. Collectively, we demonstrate that primary epithelial cells maintained as organoids represent a valuable resource for assessing interactions between the epithelium and luminal microbes across individuals, and that these models are likely to contribute to a better understanding of host microbe interactions.
Keywords: Intestinal organoids; bacterial–epithelial interactions; intestinal epithelium; microbiome; probiotics.
Figures





References
-
- Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun. 2021;12(1):2105. doi:10.1038/s41467-021-22212-1. - DOI - PMC - PubMed
-
- Ehrlich AM, Pacheco AR, Henrick BM, Taft D, Xu G, Huda MN, Mishchuk D, Goodson ML, Slupsky C, Barile D, et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol. 2020;20(1):357. doi:10.1186/s12866-020-02023-y. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases