Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 10;131(19):193601.
doi: 10.1103/PhysRevLett.131.193601.

Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators

Affiliations

Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators

Wui Seng Leong et al. Phys Rev Lett. .

Abstract

Two-mode squeezed states, which are entangled states with bipartite quantum correlations in continuous-variable systems, are crucial in quantum information processing and metrology. Recently, continuous-variable quantum computing with the vibrational modes of trapped atoms has emerged with significant progress, featuring a high degree of control in hybridizing with spin qubits. Creating two-mode squeezed states in such a platform could enable applications that are only viable with photons. Here, we experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers. The states are generated by a controlled projection conditioned on the relative phase of two independent squeezed states. The individual squeezing is created by sudden jumps of the oscillators' frequencies, allowing generating of the two-mode squeezed states at a rate within a fraction of the oscillation frequency. We validate the states by entanglement steering criteria and Fock state analysis. Our results can be applied in other mechanical oscillators for quantum sensing and continuous-variable quantum information.

PubMed Disclaimer

LinkOut - more resources