Enhancing the effectiveness of bioaerosol disinfection in indoor environments by optimizing far-UVC lamp locations based on Markov chain model
- PMID: 38000739
- DOI: 10.1016/j.scitotenv.2023.168803
Enhancing the effectiveness of bioaerosol disinfection in indoor environments by optimizing far-UVC lamp locations based on Markov chain model
Abstract
Far-ultraviolet C (far-UVC) light is an effective and safe disinfection method for bioaerosol control in occupied indoor environments. The installation location of a far-UVC lamp strongly influences the spatial distribution of far-UVC irradiance, and thus the effectiveness of bioaerosol disinfection. To assist the design process, this study developed a fast prediction approach based on the Markov chain model for optimizing the installation locations of far-UVC lamps in order to enhance the disinfection effectiveness for indoor bioaerosol control. Experiments were conducted in an environmental chamber to validate the proposed simulation-based optimization approach. The results show that the proposed method can correctly predict the disinfection efficiency when compared with experimental data, and optimizing the installation location of the far-UVC lamp increased the disinfection efficiency by 54 % compared with the worst location. As an application, the validated method was then used to design the installation location of a far-UVC lamp in a real conference room. The results show that installing the far-UVC lamp in the optimal location can increase the disinfection efficiency by 48 % compared with the worst installation location. Therefore, optimizing the far-UVC lamp location using the proposed Markov chain model can enhance the effectiveness of bioaerosol disinfection in indoor environments.
Keywords: Airborne infectious diseases control; Bioaerosol transport; Computational fluid dynamics (CFD); Far-UVC disinfection; Fast computational model.
Copyright © 2023 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous