LUBAC is required for RIG-I sensing of RNA viruses
- PMID: 38001254
- PMCID: PMC10781740
- DOI: 10.1038/s41418-023-01233-x
LUBAC is required for RIG-I sensing of RNA viruses
Abstract
The ability of cells to mount an interferon response to virus infections depends on intracellular nucleic acid sensing pattern recognition receptors (PRRs). RIG-I is an intracellular PRR that binds short double-stranded viral RNAs to trigger MAVS-dependent signalling. The RIG-I/MAVS signalling complex requires the coordinated activity of multiple kinases and E3 ubiquitin ligases to activate the transcription factors that drive type I and type III interferon production from infected cells. The linear ubiquitin chain assembly complex (LUBAC) regulates the activity of multiple receptor signalling pathways in both ligase-dependent and -independent ways. Here, we show that the three proteins that constitute LUBAC have separate functions in regulating RIG-I signalling. Both HOIP, the E3 ligase capable of generating M1-ubiquitin chains, and LUBAC accessory protein HOIL-1 are required for viral RNA sensing by RIG-I. The third LUBAC component, SHARPIN, is not required for RIG-I signalling. These data cement the role of LUBAC as a positive regulator of RIG-I signalling and as an important component of antiviral innate immune responses.
© 2023. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures







Similar articles
-
The HOIL-1L ligase modulates immune signalling and cell death via monoubiquitination of LUBAC.Nat Cell Biol. 2020 Jun;22(6):663-673. doi: 10.1038/s41556-020-0517-9. Epub 2020 May 11. Nat Cell Biol. 2020. PMID: 32393887
-
Linear ubiquitin assembly complex negatively regulates RIG-I- and TRIM25-mediated type I interferon induction.Mol Cell. 2011 Feb 4;41(3):354-65. doi: 10.1016/j.molcel.2010.12.029. Mol Cell. 2011. PMID: 21292167 Free PMC article.
-
Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex.J Virol. 2017 Jan 18;91(3):e01911-16. doi: 10.1128/JVI.01911-16. Print 2017 Feb 1. J Virol. 2017. PMID: 27881655 Free PMC article.
-
Linear ubiquitin chains: enzymes, mechanisms and biology.Open Biol. 2017 Apr;7(4):170026. doi: 10.1098/rsob.170026. Open Biol. 2017. PMID: 28446710 Free PMC article. Review.
-
Biochemistry, Pathophysiology, and Regulation of Linear Ubiquitination: Intricate Regulation by Coordinated Functions of the Associated Ligase and Deubiquitinase.Cells. 2021 Oct 9;10(10):2706. doi: 10.3390/cells10102706. Cells. 2021. PMID: 34685685 Free PMC article. Review.
Cited by
-
HOIL1 mediates MDA5 activation through ubiquitination of LGP2.bioRxiv [Preprint]. 2024 Apr 3:2024.04.02.587772. doi: 10.1101/2024.04.02.587772. bioRxiv. 2024. PMID: 38617308 Free PMC article. Preprint.
-
Intestinal-pulmonary axis: a 'Force For Good' against respiratory viral infections.Front Immunol. 2025 Mar 18;16:1534241. doi: 10.3389/fimmu.2025.1534241. eCollection 2025. Front Immunol. 2025. PMID: 40170840 Free PMC article. Review.
-
Febrile temperature activates the innate immune response by promoting aberrant influenza A virus RNA synthesis.bioRxiv [Preprint]. 2025 Jul 30:2025.05.19.654939. doi: 10.1101/2025.05.19.654939. bioRxiv. 2025. PMID: 40475563 Free PMC article. Preprint.
-
Strategies and scheming: the war between PRRSV and host cells.Virol J. 2025 Jun 11;22(1):191. doi: 10.1186/s12985-025-02685-y. Virol J. 2025. PMID: 40500743 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous