Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Nov 15;13(11):1594.
doi: 10.3390/brainsci13111594.

Non-Invasive Systems Application in Traumatic Brain Injury Rehabilitation

Affiliations
Review

Non-Invasive Systems Application in Traumatic Brain Injury Rehabilitation

Livia Livinț Popa et al. Brain Sci. .

Abstract

Traumatic brain injury (TBI) is a significant public health concern, often leading to long-lasting impairments in cognitive, motor and sensory functions. The rapid development of non-invasive systems has revolutionized the field of TBI rehabilitation by offering modern and effective interventions. This narrative review explores the application of non-invasive technologies, including electroencephalography (EEG), quantitative electroencephalography (qEEG), brain-computer interface (BCI), eye tracking, near-infrared spectroscopy (NIRS), functional near-infrared spectroscopy (fNIRS), magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) in assessing TBI consequences, and repetitive transcranial magnetic stimulation (rTMS), low-level laser therapy (LLLT), neurofeedback, transcranial direct current stimulation (tDCS), transcranial alternative current stimulation (tACS) and virtual reality (VR) as therapeutic approaches for TBI rehabilitation. In pursuit of advancing TBI rehabilitation, this narrative review highlights the promising potential of non-invasive technologies. We emphasize the need for future research and clinical trials to elucidate their mechanisms of action, refine treatment protocols, and ensure their widespread adoption in TBI rehabilitation settings.

Keywords: non-invasive technologies; rehabilitation; traumatic brain injury.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Similar articles

Cited by

References

    1. Maas A.I.R., Menon D.K., Adelson P.D., Andelic N., Bell M.J., Belli A., Bragge P., Brazinova A., Büki A., Chesnut R.M., et al. Traumatic Brain Injury: Integrated Approaches to Improve Prevention, Clinical Care, and Research. Lancet Neurol. 2017;16:987–1048. doi: 10.1016/S1474-4422(17)30371-X. - DOI - PubMed
    1. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators Global, Regional, and National Burden of Traumatic Brain Injury and Spinal Cord Injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:56–87. doi: 10.1016/S1474-4422(18)30415-0. - DOI - PMC - PubMed
    1. Global Health Data Exchange. 2019 Global Burden of Disease (GBD) Study. [(accessed on 9 November 2023)]. Available online: https://ghdx.healthdata.org/gbd-results-tool.
    1. Ng S.Y., Lee A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019;13:528. doi: 10.3389/fncel.2019.00528. - DOI - PMC - PubMed
    1. Iaccarino M.A., Bhatnagar S., Zafonte R. Handbook of Clinical Neurology. Volume 127. Elsevier; Amsterdam, The Netherlands: 2015. Rehabilitation after Traumatic Brain Injury; pp. 411–422. - PubMed

LinkOut - more resources