Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec;251(2):471-8.
doi: 10.1016/0003-9861(86)90354-1.

Selective reactivation of steroid hydroxylases following dissociation of the isosafrole metabolite complex with rat hepatic cytochrome P-450

Selective reactivation of steroid hydroxylases following dissociation of the isosafrole metabolite complex with rat hepatic cytochrome P-450

M Murray et al. Arch Biochem Biophys. 1986 Dec.

Abstract

In order to elucidate the isozyme specificity of complex formation between cytochrome P-450 and the isosafrole metabolite the effect of complex dissociation on different steroid hydroxylation pathways was studied in hepatic microsomal fractions. Isosafrole induction was found to increase the 16 beta- and 7 alpha-hydroxylation of androst-4-ene-3,17-dione approximately 2.8- and 1.7-fold, respectively, whereas the 16 alpha-hydroxylation pathway was decreased to about one-quarter of control activity; 6 beta-hydroxylation was unchanged from control activity. More striking changes were apparent following dissociation of the isosafrole metabolite from its complex with ferricytochrome P-450 by the steroid substrate. Thus an approximate fourfold elevation of 16 beta-hydroxylase activity was observed after displacement and 6 beta-hydroxylation increased about twofold; 7 alpha-hydroxylase activity was decreased to 0.75-fold of undisplaced activity and 16 alpha-hydroxylase activity was unchanged. These data provide convincing evidence that at least two forms of phenobarbital-inducible cytochrome P-450 (cytochromes P-450PB-B and P-450PB/PCN-E) are present to some extent in a catalytically inactive complexed state in isosafrole-induced rat hepatic microsomes. Furthermore, there is now evidence to suggest that the constitutive isozymes cytochrome P-450UT-A and cytochrome P-450UT-F are not complexed to any degree in hepatic microsomes from isosafrole-induced rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources