Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb:182:e210-e230.
doi: 10.1016/j.wneu.2023.11.081. Epub 2023 Nov 24.

Personalized Prognosis with Machine Learning Models for Predicting In-Hospital Outcomes Following Intracranial Meningioma Resections

Affiliations

Personalized Prognosis with Machine Learning Models for Predicting In-Hospital Outcomes Following Intracranial Meningioma Resections

Mert Karabacak et al. World Neurosurg. 2024 Feb.

Abstract

Background: Meningiomas display diverse biological traits and clinical behaviors, complicating patient outcome prediction. This heterogeneity, along with varying prognoses, underscores the need for a precise, personalized evaluation of postoperative outcomes.

Methods: Data from the American College of Surgeons National Surgical Quality Improvement Program database identified patients who underwent intracranial meningioma resections from 2014 to 2020. We focused on 5 outcomes: prolonged LOS, nonhome discharges, 30-day readmissions, unplanned reoperations, and major complications. Six machine learning algorithms, including TabPFN, TabNet, XGBoost, LightGBM, Random Forest, and Logistic Regression, coupled with the Optuna optimization library for hyperparameter tuning, were tested. Models with the highest area under the receiver operating characteristic (AUROC) values were included in the web application. SHapley Additive exPlanations were used to evaluate the importance of predictor variables.

Results: Our analysis included 7000 patients. Of these patients, 1658 (23.7%) had prolonged LOS, 1266 (18.1%) had nonhome discharges, 573 (8.2%) had 30-day readmission, 253 (3.6%) had unplanned reoperation, and 888 (12.7%) had major complications. Performance evaluation indicated that the top-performing models for each outcome were the models built with LightGBM and Random Forest algorithms. The LightGBM models yielded AUROCs of 0.842 and 0.846 in predicting prolonged LOS and nonhome discharges, respectively. The Random Forest models yielded AUROCs of 0.717, 0.76, and 0.805 in predicting 30-day readmissions, unplanned reoperations, and major complications, respectively.

Conclusions: The study successfully demonstrated the potential of machine learning models in predicting short-term adverse postoperative outcomes after meningioma resections. This approach represents a significant step forward in personalizing the information provided to meningioma patients.

Keywords: Artificial intelligence; Intracranial tumor; Machine learning; Meningioma; Outcome prediction; Personalized medicine; Precision medicine; Web application.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources