Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 20:912:168744.
doi: 10.1016/j.scitotenv.2023.168744. Epub 2023 Nov 23.

Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution

Affiliations

Tetracycline removal from soil by phosphate-modified biochar: Performance and bacterial community evolution

Wei Han et al. Sci Total Environ. .

Abstract

Since the remediation performance of soil tetracycline pollution by original biochar is not ideal, many modified methods have been proposed to improve its performance. Considering the cost, complex modification process and environmental friendliness, many modified biochar are difficult to be used in soil environments. In this work, biochar derived from corn stover was modified using phosphate to increase the adsorption ability of soil tetracycline and alleviate the negative effects caused by tetracycline. The results showed that pyrolysis temperatures and anion types of phosphate (PO43-, HPO42-, H2PO4-) played important roles in the performance of modified biochar. Compared with original biochar, phosphate modified biochar not only improved the adsorption capacity, but also changed the adsorption behavior of tetracycline. Via SEM, BET and FTIR techniques, the intrinsic reasons for the increase of adsorption capacity were explained by the change of morphological structures as well as functional groups of the modified biochar. K3PO4 and high temperature (800 °C) maximally improved the surface morphology, increased the pore structure, changed the surface functional groups of biochar, and then increased the adsorption capacity of tetracycline (124.51 mg/g). Subsequently, the optimal material (K3PO4-800) was selected and applied for tetracycline contaminated soil remediation. Compared to the soil without remediation, K3PO4-800 modified biochar effectively reduced the effective concentration of tetracycline in soil, and improved soil K and P nutrition, and reshaped microbial communities. Our study showed that K3PO4-800 modified biochar was not only a good tetracycline resistant material, but also a good soil amendment.

Keywords: Adsorption; Microbial community; Modification; Tetracycline.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in or the review of, the manuscript entitled.

LinkOut - more resources