Machine learning-based peptide-spectrum match rescoring opens up the immunopeptidome
- PMID: 38009585
- DOI: 10.1002/pmic.202300336
Machine learning-based peptide-spectrum match rescoring opens up the immunopeptidome
Abstract
Immunopeptidomics is a key technology in the discovery of targets for immunotherapy and vaccine development. However, identifying immunopeptides remains challenging due to their non-tryptic nature, which results in distinct spectral characteristics. Moreover, the absence of strict digestion rules leads to extensive search spaces, further amplified by the incorporation of somatic mutations, pathogen genomes, unannotated open reading frames, and post-translational modifications. This inflation in search space leads to an increase in random high-scoring matches, resulting in fewer identifications at a given false discovery rate. Peptide-spectrum match rescoring has emerged as a machine learning-based solution to address challenges in mass spectrometry-based immunopeptidomics data analysis. It involves post-processing unfiltered spectrum annotations to better distinguish between correct and incorrect peptide-spectrum matches. Recently, features based on predicted peptidoform properties, including fragment ion intensities, retention time, and collisional cross section, have been used to improve the accuracy and sensitivity of immunopeptide identification. In this review, we describe the diverse bioinformatics pipelines that are currently available for peptide-spectrum match rescoring and discuss how they can be used for the analysis of immunopeptidomics data. Finally, we provide insights into current and future machine learning solutions to boost immunopeptide identification.
Keywords: data analysis; immunopeptidomics; machine learning; mass spectrometry.
© 2023 The Authors. PROTEOMICS published by Wiley‐VCH GmbH.
Similar articles
-
Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain.Mass Spectrom Rev. 2025 Jul-Aug;44(4):599-629. doi: 10.1002/mas.21905. Epub 2024 Aug 16. Mass Spectrom Rev. 2025. PMID: 39152539 Free PMC article. Review.
-
Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF.Nat Commun. 2024 May 10;15(1):3956. doi: 10.1038/s41467-024-48322-0. Nat Commun. 2024. PMID: 38730277 Free PMC article.
-
Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification.Mol Cell Proteomics. 2024 Jul;23(7):100798. doi: 10.1016/j.mcpro.2024.100798. Epub 2024 Jun 11. Mol Cell Proteomics. 2024. PMID: 38871251 Free PMC article. Review.
-
MS2Rescore: Data-Driven Rescoring Dramatically Boosts Immunopeptide Identification Rates.Mol Cell Proteomics. 2022 Aug;21(8):100266. doi: 10.1016/j.mcpro.2022.100266. Epub 2022 Jul 6. Mol Cell Proteomics. 2022. PMID: 35803561 Free PMC article.
-
INFERYS rescoring: Boosting peptide identifications and scoring confidence of database search results.Rapid Commun Mass Spectrom. 2025 May;39 Suppl 1:e9128. doi: 10.1002/rcm.9128. Epub 2021 Jun 28. Rapid Commun Mass Spectrom. 2025. PMID: 34015160
Cited by
-
An Automated Workflow to Address Proteome Complexity and the Large Search Space Problem in Proteomics and HLA-I Immunopeptidomics.Mol Cell Proteomics. 2025 Jul 21;24(9):101039. doi: 10.1016/j.mcpro.2025.101039. Online ahead of print. Mol Cell Proteomics. 2025. PMID: 40701202 Free PMC article.
-
Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain.Mass Spectrom Rev. 2025 Jul-Aug;44(4):599-629. doi: 10.1002/mas.21905. Epub 2024 Aug 16. Mass Spectrom Rev. 2025. PMID: 39152539 Free PMC article. Review.
-
Fragment ion intensity prediction improves the identification rate of non-tryptic peptides in timsTOF.Nat Commun. 2024 May 10;15(1):3956. doi: 10.1038/s41467-024-48322-0. Nat Commun. 2024. PMID: 38730277 Free PMC article.
-
Koina: Democratizing machine learning for proteomics research.bioRxiv [Preprint]. 2024 Jun 3:2024.06.01.596953. doi: 10.1101/2024.06.01.596953. bioRxiv. 2024. PMID: 38895358 Free PMC article. Preprint.
-
Rescoring Peptide Spectrum Matches: Boosting Proteomics Performance by Integrating Peptide Property Predictors Into Peptide Identification.Mol Cell Proteomics. 2024 Jul;23(7):100798. doi: 10.1016/j.mcpro.2024.100798. Epub 2024 Jun 11. Mol Cell Proteomics. 2024. PMID: 38871251 Free PMC article. Review.
References
REFERENCES
-
- Vaughan, K., Xu, X., Caron, E., Peters, B., & Sette, A. (2017). Deciphering the MHC‐associated peptidome: A review of naturally processed ligand data. Expert Review of Proteomics, 14, 729–736.
-
- Peltonen, K., Feola, S., Umer, H. M., Chiaro, J., Mermelekas, G., Ylösmäki, E., Pesonen, S., Branca, R. M. M., Lehtiö, J., & Cerullo, V. (2021). Therapeutic cancer vaccination with immunopeptidomics‐discovered antigens confers protective antitumor efficacy. Cancers, 13, 3408.
-
- Prinz, J. C. (2023). Immunogenic self‐peptides—the great unknowns in autoimmunity: Identifying T‐cell epitopes driving the autoimmune response in autoimmune diseases. Frontiers in Immunology, 13, 1097871.
-
- Leddy, O. K., White, F. M., & Bryson, B. D. (2021). Leveraging immunopeptidomics to study and combat infectious disease. mSystems, 6, e0031021.
-
- Mayer, R. L., & Impens, F. (2021). Immunopeptidomics for next‐generation bacterial vaccine development. Trends Microbiology, 29, 1034–1045.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources