Neonatal mortality risk of large-for-gestational-age and macrosomic live births in 15 countries, including 115.6 million nationwide linked records, 2000-2020
- PMID: 38012114
- DOI: 10.1111/1471-0528.17706
Neonatal mortality risk of large-for-gestational-age and macrosomic live births in 15 countries, including 115.6 million nationwide linked records, 2000-2020
Abstract
Objective: We aimed to compare the prevalence and neonatal mortality associated with large for gestational age (LGA) and macrosomia among 115.6 million live births in 15 countries, between 2000 and 2020.
Design: Population-based, multi-country study.
Setting: National healthcare systems.
Population: Liveborn infants.
Methods: We used individual-level data identified for the Vulnerable Newborn Measurement Collaboration. We calculated the prevalence and relative risk (RR) of neonatal mortality among live births born at term + LGA (>90th centile, and also >95th and >97th centiles when the data were available) versus term + appropriate for gestational age (AGA, 10th-90th centiles) and macrosomic (≥4000, ≥4500 and ≥5000 g, regardless of gestational age) versus 2500-3999 g. INTERGROWTH 21st served as the reference population.
Main outcome measures: Prevalence and neonatal mortality risks.
Results: Large for gestational age was common (median prevalence 18.2%; interquartile range, IQR, 13.5%-22.0%), and overall was associated with a lower neonatal mortality risk compared with AGA (RR 0.83, 95% CI 0.77-0.89). Around one in ten babies were ≥4000 g (median prevalence 9.6% (IQR 6.4%-13.3%), with 1.2% (IQR 0.7%-2.0%) ≥4500 g and with 0.2% (IQR 0.1%-0.2%) ≥5000 g). Overall, macrosomia of ≥4000 g was not associated with increased neonatal mortality risk (RR 0.80, 95% CI 0.69-0.94); however, a higher risk was observed for birthweights of ≥4500 g (RR 1.52, 95% CI 1.10-2.11) and ≥5000 g (RR 4.54, 95% CI 2.58-7.99), compared with birthweights of 2500-3999 g, with the highest risk observed in the first 7 days of life.
Conclusions: In this population, birthweight of ≥4500 g was the most useful marker for early mortality risk in big babies and could be used to guide clinical management decisions.
Keywords: fetal macrosomia; infant; large for gestational age; neonatal mortality; pregnancy.
© 2023 The Authors. BJOG: An International Journal of Obstetrics and Gynaecology published by John Wiley & Sons Ltd.
References
REFERENCES
-
- Abbas F, Kumar R, Mahmood T, Somrongthong R. Impact of children born with low birth weight on stunting and wasting in Sindh province of Pakistan: a propensity score matching approach. Sci Rep. 2021;11(1):19932.
-
- Paixao ES, Blencowe H, Falcao IR, Ohuma EO, Rocha AS, Alves FJO, et al. Risk of mortality for small newborns in Brazil, 2011-2018: a national birth cohort study of 17.6 million records from routine register-based linked data. Lancet Reg Health Am. 2021; 3(100045): 1-8.
-
- Katz J, Lee ACC, Kozuki N, Lawn JE, Cousens S, Blencowe H, et al. Mortality risk in preterm and small-for-gestational-age infants in low-income and middle-income countries: a pooled country analysis. Lancet. 2013;382(9890):417-425.
-
- Fernández de Gamarra-Oca L, Ojeda N, Gómez-Gastiasoro A, Peña J, Ibarretxe-Bilbao N, García-Guerrero MA, et al. Long-term neurodevelopmental outcomes after moderate and late preterm birth: a systematic review. J Pediatr. 2021;237:168-176.e11.
-
- Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(8):772-781.
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
