Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Nov 14:2023.11.13.566922.
doi: 10.1101/2023.11.13.566922.

Continuous evolution of user-defined genes at 1-million-times the genomic mutation rate

Continuous evolution of user-defined genes at 1-million-times the genomic mutation rate

Gordon Rix et al. bioRxiv. .

Update in

Abstract

When nature maintains or evolves a gene's function over millions of years at scale, it produces a diversity of homologous sequences whose patterns of conservation and change contain rich structural, functional, and historical information about the gene. However, natural gene diversity likely excludes vast regions of functional sequence space and includes phylogenetic and evolutionary eccentricities, limiting what information we can extract. We introduce an accessible experimental approach for compressing long-term gene evolution to laboratory timescales, allowing for the direct observation of extensive adaptation and divergence followed by inference of structural, functional, and environmental constraints for any selectable gene. To enable this approach, we developed a new orthogonal DNA replication (OrthoRep) system that durably hypermutates chosen genes at a rate of >10 -4 substitutions per base in vivo . When OrthoRep was used to evolve a conditionally essential maladapted enzyme, we obtained thousands of unique multi-mutation sequences with many pairs >60 amino acids apart (>15% divergence), revealing known and new factors influencing enzyme adaptation. The fitness of evolved sequences was not predictable by advanced machine learning models trained on natural variation. We suggest that OrthoRep supports the prospective and systematic discovery of constraints shaping gene evolution, uncovering of new regions in fitness landscapes, and general applications in biomolecular engineering.

PubMed Disclaimer

Publication types

LinkOut - more resources