Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 May;46(5):2709-2721.
doi: 10.1109/TPAMI.2023.3337195. Epub 2024 Apr 3.

A Flexible EM-Like Clustering Algorithm for Noisy Data

A Flexible EM-Like Clustering Algorithm for Noisy Data

Violeta Roizman et al. IEEE Trans Pattern Anal Mach Intell. 2024 May.

Abstract

Though very popular, it is well known that the Expectation-Maximisation (EM) algorithm for the Gaussian mixture model performs poorly for non-Gaussian distributions or in the presence of outliers or noise. In this paper, we propose a Flexible EM-like Clustering Algorithm (FEMCA): a new clustering algorithm following an EM procedure is designed. It is based on both estimations of cluster centers and covariances. In addition, using a semi-parametric paradigm, the method estimates an unknown scale parameter per data point. This allows the algorithm to accommodate heavier tail distributions, noise, and outliers without significantly losing efficiency in various classical scenarios. We first present the general underlying model for independent, but not necessarily identically distributed, samples of elliptical distributions. We then derive and analyze the proposed algorithm in this context, showing in particular important distribution-free properties of the underlying data distributions. The algorithm convergence and accuracy properties are analyzed by considering the first synthetic data. Finally, we show that FEMCA outperforms other classical unsupervised methods of the literature, such as k-means, EM for Gaussian mixture models, and its recent modifications or spectral clustering when applied to real data sets as MNIST, NORB, and 20newsgroups.

PubMed Disclaimer