Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2024 May;31(5):2011-2026.
doi: 10.1016/j.acra.2023.10.061. Epub 2023 Nov 27.

Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study

Affiliations
Free article
Multicenter Study

Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study

Jun Zhang et al. Acad Radiol. 2024 May.
Free article

Abstract

Rationale and objectives: To construct and validate a deep learning radiomics (DLR) model based on X-ray images for predicting and distinguishing acute and chronic osteoporotic vertebral fractures (OVFs).

Methods: A total of 942 cases (1076 vertebral bodies) with both vertebral X-ray examination and MRI scans were included in this study from three hospitals. They were divided into a training cohort (n = 712), an internal validation cohort (n = 178), an external validation cohort (n = 111), and a prospective validation cohort (n = 75). The ResNet-50 model architecture was used for deep transfer learning (DTL), with pre-training performed on RadImageNet and ImageNet datasets. DTL features and radiomics features were extracted from lateral X-ray images of OVFs patients and fused together. A logistic regression model with the least absolute shrinkage and selection operator was established, with MRI showing bone marrow edema as the gold standard for acute OVFs. The performance of the model was evaluated using receiver operating characteristic curves. Eight machine learning classification models were evaluated for their ability to distinguish between acute and chronic OVFs. The Nomogram was constructed by combining clinical baseline data to achieve visualized classification assessment. The predictive performance of the best RadImageNet model and ImageNet model was compared using the Delong test. The clinical value of the Nomogram was evaluated using decision curve analysis (DCA).

Results: Pre-training resulted in 34 and 39 fused features after feature selection and fusion. The most effective machine learning algorithm in both DLR models was Light Gradient Boosting Machine. Using the Delong test, the area under the curve (AUC) for distinguishing between acute and chronic OVFs in the training cohort was 0.979 and 0.972 for the RadImageNet and ImageNet models, respectively, with no statistically significant difference between them (P = 0.235). In the internal validation cohort, external validation cohort, and prospective validation cohort, the AUCs for the two models were 0.967 vs 0.629, 0.886 vs 0.817, and 0.933 vs 0.661, respectively, with statistically significant differences in all comparisons (P < 0.05). The deep learning radiomics nomogram (DLRN) was constructed by combining the predictive model of RadImageNet with clinical baseline features, resulting in AUCs of 0.981, 0.974, 0.895, and 0.902 in the training cohort, internal validation cohort, external validation cohort, and prospective validation cohort, respectively. Using the Delong test, the AUCs for the fused feature model and the DLRN in the training cohort were 0.979 and 0.981, respectively, with no statistically significant difference between them (P = 0.169). In the internal validation cohort, external validation cohort, and prospective validation cohort, the AUCs for the two models were 0.967 vs 0.974, 0.886 vs 0.895, and 0.933 vs 0.902, respectively, with statistically significant differences in all comparisons (P < 0.05). The Nomogram showed a slight improvement in predictive performance in the internal and external validation cohort, but a slight decrease in the prospective validation cohort (0.933 vs 0.902). DCA showed that the Nomogram provided more benefits to patients compared to the DLR models.

Conclusion: Compared to the ImageNet model, the RadImageNet model has higher diagnostic value in distinguishing between acute and chronic OVFs. Furthermore, the diagnostic performance of the model is further improved when combined with clinical baseline features to construct the Nomogram.

Keywords: Deep learning; Differential diagnosis; Osteoporotic vertebral fractures; Radiomics; X-ray imaging.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources