Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Oct 31:17:100647.
doi: 10.1016/j.onehlt.2023.100647. eCollection 2023 Dec.

Evaluating the contribution of antimicrobial use in farmed animals to global antimicrobial resistance in humans

Affiliations

Evaluating the contribution of antimicrobial use in farmed animals to global antimicrobial resistance in humans

Zahra Ardakani et al. One Health. .

Abstract

Antimicrobial resistance (AMR) is currently regarded by the World Health Organization (WHO) as one of the most significant risks to global public health. The most critical causes of AMR infections in humans are the misuse and overuse of antimicrobials in humans and farmed animals. The rising global demand for food of animal origin encourages the increase of animal production worldwide, especially in developing countries. Simultaneously, current farming practices often extensively use antimicrobials on animals, influencing bacterial AMR incidence. This study aims to evaluate the correlation between antimicrobial use (AMU) in farmed animals and the detection of AMR infections in humans, the effects of enforcing laws in animal farming in a country on AMR situation in the neighbors, and the potential of AMR to spread from one country to another. Using data from 30 largest animal-producing countries in different regions of the world, between 2010 and 2020, and a Spatial Durbin Model (SDM), we found that AMU in farmed animals increases AMR in humans and there is a spatial dependence between countries regarding AMR spreading. Such findings indicate that a globally coordinated strategy regulating AMU on farmed animals may reduce AMR emergence and worldwide spreading.

Keywords: Antibiotics; Antimicrobial resistance (AMR) in humans; Antimicrobial use (AMU) in farmed animals; One health; Spatial analysis.

PubMed Disclaimer

Conflict of interest statement

World Animal Protection provided financial support for the research to the Department of Agricultural and Food Sciences of the 10.13039/501100005969University of Bologna. One of the authors is an employee of World Animal Protection. World Animal Protection did not have any role in the study design, collection, analysis, and interpretation of data.

Figures

Fig. 1
Fig. 1
AMR in Humans (%) from E. coli and S. aureus in the largest animal producing countries (from 2010 to 2020); Source: [39] and own calculation.
Fig. 2
Fig. 2
Connectivity map of the weighted matrix over averaged (from 2010 to 2020) AMR in humans in the largest animal producing countries (range numbers in square brackets are level of AMR, and numbers in parentheses are the number of countries located in each category); Source: [39] and own calculations.
Fig. A1
Fig. A1
The largest cattle producer countries selected for the study (average from 2010 to 2020), the numbers in parentheses are share (%) of each country in the global production, others excluded; Source: [44] and own calculation
Fig. A2
Fig. A2
The largest chicken producer countries selected for the study (average from 2010 to 2020), the numbers in parentheses are share (%) of each country in the global production, others excluded; Source: [44] and own calculation.
Fig. A3
Fig. A3
The largest pig producer countries selected for the study (average from 2010 to 2020), the numbers in parentheses are share (%) of each country in the global production, others excluded; Source: [44] and own calculation.
Fig. A4
Fig. A4
The largest aquatics producer countries selected for the study (average from 2010 to 2020), the numbers in parentheses are share (%) of each country in the global production, others excluded; Source: [45] and own calculation.

References

    1. Silbergeld E.K., Graham J., Price L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health. 2008;29:151–169. doi: 10.1146/annurev.publhealth.29.020907.090904. - DOI - PubMed
    1. Murray C.J.L., Ikuta K.S., Sharara F., Swetschinski L., Robles Aguilar G., Gray A., Han C., Bisignano C., Rao P., Wool E., Johnson S.C., Browne A.J., Chipeta M.G., Fell F., Hackett S., Haines-Woodhouse G., Kashef Hamadani B.H., Kumaran E.A.P., McManigal B., Achalapong S., Agarwal R., Akech S., Albertson S., Amuasi J., Andrews J., Aravkin A., Ashley E., Babin F.-X., Bailey F., Baker S., Basnyat B., Bekker A., Bender R., Berkley J.A., Bethou A., Bielicki J., Boonkasidecha S., Bukosia J., Carvalheiro C., Castañeda-Orjuela C., Chansamouth V., Chaurasia S., Chiurchiù S., Chowdhury F., Clotaire Donatien R., Cook A.J., Cooper B., Cressey T.R., Criollo-Mora E., Cunningham M., Darboe S., Day N.P.J., De Luca M., Dokova K., Dramowski A., Dunachie S.J., Duong Bich T., Eckmanns T., Eibach D., Emami A., Feasey N., Fisher-Pearson N., Forrest K., Garcia C., Garrett D., Gastmeier P., Giref A.Z., Greer R.C., Gupta V., Haller S., Haselbeck A., Hay S.I., Holm M., Hopkins S., Hsia Y., Iregbu K.C., Jacobs J., Jarovsky D., Javanmardi F., Jenney A.W.J., Khorana M., Khusuwan S., Kissoon N., Kobeissi E., Kostyanev T., Krapp F., Krumkamp R., Kumar A., Kyu H.H., Lim C., Lim K., Limmathurotsakul D., Loftus M.J., Lunn M., Ma J., Manoharan A., Marks F., May J., Mayxay M., Mturi N., Munera-Huertas T., Musicha P., Musila L.A., Mussi-Pinhata M.M., Naidu R.N., Nakamura T., Nanavati R., Nangia S., Newton P., Ngoun C., Novotney A., Nwakanma D., Obiero C.W., Ochoa T.J., Olivas-Martinez A., Olliaro P., Ooko E., Ortiz-Brizuela E., Ounchanum P., Pak G.D., Paredes J.L., Peleg A.Y., Perrone C., Phe T., Phommasone K., Plakkal N., Ponce-de-Leon A., Raad M., Ramdin T., Rattanavong S., Riddell A., Roberts T., Robotham J.V., Roca A., Rosenthal V.D., Rudd K.E., Russell N., Sader H.S., Saengchan W., Schnall J., Scott J.A.G., Seekaew S., Sharland M., Shivamallappa M., Sifuentes-Osornio J., Simpson A.J., Steenkeste N., Stewardson A.J., Stoeva T., Tasak N., Thaiprakong A., Thwaites G., Tigoi C., Turner C., Turner P., van Doorn H.R., Velaphi S., Vongpradith A., Vongsouvath M., Vu H., Walsh T., Walson J.L., Waner S., Wangrangsimakul T., Wannapinij P., Wozniak T., Young Sharma T.E.M.W., Yu K.C., Zheng P., Sartorius B., Lopez A.D., Stergachis A., Moore C., Dolecek C., Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed
    1. Shrestha P., Cooper B.S., Coast J., Oppong R., Thuy N.D.T., Phodha T., Celhay O., Guerin P.J., Wertheim H., Lubell Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control. 2018;7:1–9. doi: 10.1186/s13756-018-0384-3. - DOI - PMC - PubMed
    1. FAO . 2023. Antimicrobial Resistance: What Is It? https://www.fao.org/antimicrobial-resistance/background/what-is-it/en/ (accessed April 6, 2023)
    1. Hendriksen R.S., Munk P., Njage P., van Bunnik B., McNally L., Lukjancenko O., Röder T., Nieuwenhuijse D., Pedersen S.K., Kjeldgaard J., Kaas R.S., Clausen P.T.L.C., Vogt J.K., Leekitcharoenphon P., van de Schans M.G.M., Zuidema T., de Roda Husman A.M., Rasmussen S., Petersen B., Bego A., Rees C., Cassar S., Coventry K., Collignon P., Allerberger F., Rahube T.O., Oliveira G., Ivanov I., Vuthy Y., Sopheak T., Yost C.K., Ke C., Zheng H., Baisheng L., Jiao X., Donado-Godoy P., Coulibaly K.J., Jergović M., Hrenovic J., Karpíšková R., Villacis J.E., Legesse M., Eguale T., Heikinheimo A., Malania L., Nitsche A., Brinkmann A., Saba C.K.S., Kocsis B., Solymosi N., Thorsteinsdottir T.R., Hatha A.M., Alebouyeh M., Morris D., Cormican M., O’Connor L., Moran-Gilad J., Alba P., Battisti A., Shakenova Z., Kiiyukia C., Ng’eno E., Raka L., Avsejenko J., Bērziņš A., Bartkevics V., Penny C., Rajandas H., Parimannan S., Haber M.V., Pal P., Jeunen G.-J., Gemmell N., Fashae K., Holmstad R., Hasan R., Shakoor S., Rojas M.L.Z., Wasyl D., Bosevska G., Kochubovski M., Radu C., Gassama A., Radosavljevic V., Wuertz S., Zuniga-Montanez R., Tay M.Y.F., Gavačová D., Pastuchova K., Truska P., Trkov M., Esterhuyse K., Keddy K., Cerdà-Cuéllar M., Pathirage S., Norrgren L., Örn S., Larsson D.G.J., Van der Heijden T., Kumburu H.H., Sanneh B., Bidjada P., Njanpop-Lafourcade B.-M., Nikiema-Pessinaba S.C., Levent B., Meschke J.S., Beck N.K., Van C.D., Do Phuc N., Tran D.M.N., Kwenda G., Tabo D., Wester A.L., Cuadros-Orellana S., Amid C., Cochrane G., Sicheritz-Ponten T., Schmitt H., Alvarez J.R.M., Aidara-Kane A., Pamp S.J., Lund O., Hald T., Woolhouse M., Koopmans M.P., Vigre H., Petersen T.N., Aarestrup F.M. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-019-08853-3. - DOI - PMC - PubMed