Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 6:14:1219008.
doi: 10.3389/fmicb.2023.1219008. eCollection 2023.

Occurrence and temporal distribution of extended-spectrum β-lactamase-producing Escherichia coli in clams from the Central Adriatic, Italy

Affiliations

Occurrence and temporal distribution of extended-spectrum β-lactamase-producing Escherichia coli in clams from the Central Adriatic, Italy

Francesca Leoni et al. Front Microbiol. .

Abstract

The spread of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is a major public health issue. Bivalves are filter-feeder animals capable of bioaccumulating the microorganisms present in water. This physiological characteristic makes them both good indicators of environmental contamination and possible carriers of pathogenic bacteria, including those resistant to antimicrobials. The aim of this study was to investigate the occurrence of ESBL-producing E. coli in clams (n = 308) collected from harvesting areas of the Central Adriatic Sea between 2018 and 2019. ESBL- /class C β-lactamase (AmpC)- producing E. coli and Escherichia spp. were isolated by streaking over the surface of MacConkey agar plates supplemented with cefotaxime enriched broths of the initial shellfish suspension. E. coli and Escherichia spp. resistant to cefotaxime were screened for ESBL production by using the double disk synergy test. Susceptibility to different antimicrobials and confirmation of ESBL-production were determined by the minimum inhibitory concentration (MIC) test. Isolates were further characterized by whole genome sequencing (WGS) and bioinformatic analysis of genomes with different tools. Overall, ESBL-producing E. coli were isolated from 3% of the samples. Of 13 ESBL- and ESBL-/AmpC-producing Escherichia spp. (n = 11 E. coli, n = 1 E. marmotae, n = 1 E. ruysiae) isolates, 13 were resistant to ampicillin and cefotaxime, 9 to sulfamethoxazole, 6 to tetracycline and nalidixic acid, 4 to trimethoprim, and 3 to ceftazidime, cefoxitin, ciprofloxacin, and chloramphenicol. Moreover, the majority (8/11) of the ESBL-producing E. coli isolates were multidrug-resistant. WGS showed that the isolates predominantly carried the blaCTX-M-15 gene (3/11) and blaCTX-M-14 and blaCTX-M-1 (2/11 each). The AmpC β-lactamase CMY-2 was found in two isolates. Phylogroup A was the most prevalent (5/11), followed by phylogroups D (4/11), F (1/11), and B2 (1/11). Ten different sequence types (STs) were identified. Occurrence at sampling sites ranged between 0 and 27%. To identify associations between the occurrence of ESBL-producing E. coli and E. coli levels, samples were divided into two groups, with E. coli at >230 MPN/100 g and E. coli at ≤230 MPN/100 g. ESBL-producing E. coli isolates were significantly more commonly recovered in samples with higher E. coli levels (14%) than in those with lower levels of E. coli (2%). Moreover, the majority (3/4) of the potentially pathogenic strains were isolated in samples with higher E. coli levels. These findings provided evidence for the bacterial indicator of fecal contamination, E. coli, as an index organism for ESBL-producing E. coli isolates in bivalves.

Keywords: CTX-M; ESBL; Escherichia coli; Escherichia marmotae; Escherichia ruysiae; antimicrobial resistance; bivalves; clam.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Occurence of ESBL-producing E. coli isolotes at 28 sampling sites of the Central Adriatic in 308 samples of clams collected between July 2018 and November 2019.

References

    1. Aerts M., Battisti A., Hendriksen R., Kempf I., Teale C., Tenhagen B. A., et al. . (2019). Technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J. 17:e05709. doi: 10.2903/j.efsa.2019.5709, PMID: - DOI - PMC - PubMed
    1. Albini E., Orso M., Cozzolino F., Sacchini L., Leoni F., Magistrali C. F. (2022). A systematic review and meta-analysis on antimicrobial resistance in marine bivalves. Front. Microbiol. 13:1040568. doi: 10.3389/fmicb.2022.1040568, PMID: - DOI - PMC - PubMed
    1. Anonymous (2004). Regulation (EC) no 854/2004 of the European Parliament and of the council of 29 April 2004 laying down specific rules for the organisation of official controls on products of animal origin intended for human consumption. Off. J. Eur. Union L226, 83–127.
    1. Anonymous (2015). ISO 16649-3:2015. Microbiology of the food chain - Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli - Part 3: Detection and most probable number technique using 5-bromo-4-chloro-3-indolyl-ß-D-glucuronide.
    1. Anonymous (2019). Commission implementing regulation (EU) 2019/627 of 15 March 2019 laying down uniform practical arrangements for the performance of official controls on products of animal origin intended for human consumption in accordance with regulation (EU) 2017/625. Off. J. Eur. Union L131, 51–100.