Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 7;14(48):10832-10846.
doi: 10.1021/acs.jpclett.3c02740. Epub 2023 Nov 29.

Facile Hydrogenolysis of Sugars to 1,2-Glycols by Ru@PPh3/OPPh3 Confined Large-Pore Mesoporous Silica

Affiliations

Facile Hydrogenolysis of Sugars to 1,2-Glycols by Ru@PPh3/OPPh3 Confined Large-Pore Mesoporous Silica

Arindam Modak et al. J Phys Chem Lett. .

Abstract

Tandem hydrogenation vis-à-vis hydrogenolysis of xylose to 1,2-glycols remains a major challenge. Although one-pot conversion of xylose to 1,2-glycols requires stringent conditions, a sustainable approach would be quite noteworthy. We have developed a microwave route for the one-pot conversion of pentose (C5) and hexose (C6) sugars into glycol and hexitol, without pressurized hydrogen reactors. A pronounced hydrogenolysis of sugars to glycols is observed by Ru single atom (SA) on triphenylphosphine/phosphine oxide-modified silica (Ru@SiP), in contrast to Ru SA on pristine (Ru@SiC) and 3-aminopropyl-modified silica (Ru@SiN). A promising "ligand effect" was observed through phosphine modification of silica that presents a 70% overall yield of all reduced sugars (xylitol + glycols) from a 99% conversion of xylose with Ru@SiP. A theoretical study by DFT depicts an electronic effect on Ru-SA by triphenylphosphine that promotes the catalytic hydrogenolysis of sugars under mild conditions. Hence, this research represents an important step for glycols from biomass-derived sources.

PubMed Disclaimer