Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels
- PMID: 38029544
- DOI: 10.1016/j.bbrc.2023.149273
Fatty acid elongation regulates mitochondrial β-oxidation and cell viability in prostate cancer by controlling malonyl-CoA levels
Abstract
Recently, the fatty acid elongation enzyme ELOVL5 was identified as a critical pro-metastatic factor in prostate cancer, required for cell growth and mitochondrial homeostasis. The fatty acid elongation reaction catalyzed by ELOVL5 utilizes malonyl-CoA as the carbon donor. Here, we demonstrate that ELOVL5 knockdown causes malonyl-CoA accumulation. Malonyl-CoA is a cellular substrate that can inhibit fatty acid β-oxidation in the mitochondria through allosteric inhibition of carnitine palmitoyltransferase 1A (CPT1A), the enzyme that controls the rate-limiting step of the long chain fatty acid β-oxidation cycle. We hypothesized that changes in malonyl-CoA abundance following ELOVL5 knockdown could influence mitochondrial β-oxidation rates in prostate cancer cells, and regulate cell viability. Accordingly, we find that ELOVL5 knockdown is associated with decreased mitochondrial β-oxidation in prostate cancer cells. Combining ELOVL5 knockdown with FASN inhibition to increase malonyl-CoA abundance endogenously enhances the effect of ELOVL5 knockdown on prostate cancer cell viability, while preventing malonyl-CoA production rescues the cells from the effect of ELOVL5 knockdown. Our findings indicate an additional role for fatty acid elongation, in the control of malonyl-CoA homeostasis, alongside its established role in the production of long-chain fatty acid species, to explain the importance of fatty acid elongation for cell viability.
Keywords: Fatty acid elongation; Fatty acid oxidation; Malonyl-CoA; Prostate cancer.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
