Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jan 1:336:122292.
doi: 10.1016/j.lfs.2023.122292. Epub 2023 Nov 27.

Diabetic individuals with COVID-19 exhibit reduced efficacy of gliptins in inhibiting dipeptidyl peptidase 4 (DPP4). A suggested explanation for increased COVID-19 susceptibility in patients with type 2 diabetes mellitus (T2DM)

Affiliations
Free article

Diabetic individuals with COVID-19 exhibit reduced efficacy of gliptins in inhibiting dipeptidyl peptidase 4 (DPP4). A suggested explanation for increased COVID-19 susceptibility in patients with type 2 diabetes mellitus (T2DM)

José María Mora-Rodríguez et al. Life Sci. .
Free article

Abstract

Aims: Dipeptidyl peptidase 4 (DPP4) has been proposed as a coreceptor for SARS-CoV-2 cellular entry. Considering that type 2 diabetes mellitus (T2DM) has been identified as the most important risk factor for SARS-CoV-2, and that gliptins (DPP4 inhibitors) are a prescribed diabetic treatment, this study aims to unravel the impact of DPP4 in the intersection of T2DM/COVID-19.

Materials and methods: We analyzed 189 serum human samples, divided into six clinical groups (controls, T2DM, T2DM + gliptins, COVID-19, COVID-19 + T2DM, and COVID-19 + T2DM + gliptins), measuring DPP4 protein concentration and activity by Western blot, ELISA, and commercial activity kits. The obtained results were verified in Huh-7 cellular models.

Key findings: Both DPP4 concentration and activity were decreased in COVID-19 patients, and as in T2DM patients, compared to controls. Despite these lower levels, the ratio of DPP4 activity/concentration in COVID-19 sera was the highest (0.782 ± 0.289 μU/ng vs. 0.547 ± 0.050 μU/ng in controls, p < 0.0001), suggesting a compensating mechanism in these patients. Supernatants of Huh-7 cells incubated with COVID-19 serum showed a consistent and significantly lower DPP4 concentration and activity. Furthermore, COVID-19 + T2DM + gliptins patients showed a higher serum DPP4 concentration and activity than T2DM + gliptin subjects (p < 0.05), indicating that sera from COVID-19 convalescents interfere with gliptins.

Significance: Either SARS-CoV-2 or some metabolites present in the sera of COVID-19-convalescent patients interact with soluble DPP4 or even gliptins themselves since the inhibitory effect of gliptins on DPP4 activity is being prevented. The interactions between DPP4, gliptins, and SARS-CoV-2 should be further elucidated to reveal the mechanism of action for these interesting observations.

Keywords: COVID-19; DPP4; Enzymatic activity; Gliptins; Type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no competing interests.

MeSH terms

Substances