Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb 29;194(3):1779-1793.
doi: 10.1093/plphys/kiad638.

Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling

Affiliations

Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling

Junjian Situ et al. Plant Physiol. .

Abstract

During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest statement. None declared.