Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Nov 17;131(20):206301.
doi: 10.1103/PhysRevLett.131.206301.

Superfluidity Meets the Solid State: Frictionless Mass Transport through a (5,5) Carbon Nanotube

Affiliations

Superfluidity Meets the Solid State: Frictionless Mass Transport through a (5,5) Carbon Nanotube

Alberto Ambrosetti et al. Phys Rev Lett. .

Abstract

Superfluidity is a well-characterized quantum phenomenon which entails frictionless motion of mesoscopic particles through a superfluid, such as ^{4}He or dilute atomic gases at very low temperatures. As shown by Landau, the incompatibility between energy and momentum conservation, which ultimately stems from the spectrum of the elementary excitations of the superfluid, forbids quantum scattering between the superfluid and the moving mesoscopic particle, below a critical speed threshold. Here, we predict that frictionless motion can also occur in the absence of a standard superfluid, i.e., when a He atom travels through a narrow (5,5) carbon nanotube (CNT). Because of the quasilinear dispersion of the plasmon and phonon modes that could interact with He, the (5,5) CNT embodies a solid-state analog of the superfluid, thereby enabling straightforward transfer of Landau's criterion of superfluidity. As a result, Landau's equations acquire broader generality and may be applicable to other nanoscale friction phenomena, whose description has been so far purely classical.

PubMed Disclaimer

LinkOut - more resources