Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Nov 20:2023.11.20.567916.
doi: 10.1101/2023.11.20.567916.

Structure of the γ-tubulin ring complex-capped microtubule

Structure of the γ-tubulin ring complex-capped microtubule

Amol Aher et al. bioRxiv. .

Update in

Abstract

Microtubules are composed of α/β-tubulin dimers positioned head-to-tail to form protofilaments that associate laterally in varying numbers. It is not known how cellular microtubules assemble with the canonical 13-protofilament architecture, resulting in micrometer-scale α/β-tubulin tracks for intracellular transport that align with, rather than spiral along, the filament's long-axis. We report that the human ∼2.3MDa γ-tubulin ring complex (γ-TuRC), an essential regulator of microtubule formation that contains 14 γ-tubulins, selectively nucleates 13-protofilament microtubules. Cryo-EM reconstructions of γ-TuRC-capped microtubule minus-ends reveal the extensive intra- and inter-domain motions of γ-TuRC subunits that accommodate its actin-containing luminal bridge and establish lateral and longitudinal interactions between γ- and α-tubulins. Our structures reveal how free γ-TuRC, an inefficient nucleation template due to its splayed conformation, transforms into a stable cap that blocks addition or loss of α/β-tubulins from minus-ends and sets the lattice architecture of cellular microtubules.

One sentence summary: Structural insights into how the γ-tubulin ring complex nucleates and caps a 13-protofilament microtubule.

PubMed Disclaimer

Publication types

LinkOut - more resources