Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Fast and Deep Phosphoproteome Analysis with the Orbitrap Astral Mass Spectrometer

Noah M Lancaster et al. bioRxiv. .

Update in

  • Fast and deep phosphoproteome analysis with the Orbitrap Astral mass spectrometer.
    Lancaster NM, Sinitcyn P, Forny P, Peters-Clarke TM, Fecher C, Smith AJ, Shishkova E, Arrey TN, Pashkova A, Robinson ML, Arp N, Fan J, Hansen J, Galmozzi A, Serrano LR, Rojas J, Gasch AP, Westphall MS, Stewart H, Hock C, Damoc E, Pagliarini DJ, Zabrouskov V, Coon JJ. Lancaster NM, et al. Nat Commun. 2024 Aug 15;15(1):7016. doi: 10.1038/s41467-024-51274-0. Nat Commun. 2024. PMID: 39147754 Free PMC article.

Abstract

Owing to its roles in cellular signal transduction, protein phosphorylation plays critical roles in myriad cell processes. That said, detecting and quantifying protein phosphorylation has remained a challenge. We describe the use of a novel mass spectrometer (Orbitrap Astral) coupled with data-independent acquisition (DIA) to achieve rapid and deep analysis of human and mouse phosphoproteomes. With this method we map approximately 30,000 unique human phosphorylation sites within a half-hour of data collection. The technology was benchmarked to other state-of-the-art MS platforms using both synthetic peptide standards and with EGF-stimulated HeLa cells. We applied this approach to generate a phosphoproteome multi-tissue atlas of the mouse. Altogether, we detected 81,120 unique phosphorylation sites within 12 hours of measurement. With this unique dataset, we examine the sequence, structural, and kinase specificity context of protein phosphorylation. Finally, we highlight the discovery potential of this resource with multiple examples of novel phosphorylation events relevant to mitochondrial and brain biology.

PubMed Disclaimer

Publication types

LinkOut - more resources