Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;19(2):196-201.
doi: 10.1038/s41565-023-01544-7. Epub 2023 Dec 4.

Ultraviolet interlayer excitons in bilayer WSe2

Affiliations

Ultraviolet interlayer excitons in bilayer WSe2

Kai-Qiang Lin et al. Nat Nanotechnol. 2024 Feb.

Abstract

Interlayer excitons in van der Waals heterostructures are fascinating for applications like exciton condensation, excitonic devices and moiré-induced quantum emitters. The study of these charge-transfer states has almost exclusively focused on band edges, limiting the spectral region to the near-infrared regime. Here we explore the above-gap analogues of interlayer excitons in bilayer WSe2 and identify both neutral and charged species emitting in the ultraviolet. Even though the transitions occur far above the band edge, the states remain metastable, exhibiting linewidths as narrow as 1.8 meV. These interlayer high-lying excitations have switchable dipole orientations and hence show prominent Stark splitting. The positive and negative interlayer high-lying trions exhibit significant binding energies of 20-30 meV, allowing for a broad tunability of transitions via electric fields and electrostatic doping. The Stark splitting of these trions serves as a highly accurate, built-in sensor for measuring interlayer electric field strengths, which are exceedingly difficult to quantify otherwise. Such excitonic complexes are further sensitive to the interlayer twist angle and offer opportunities to explore emergent moiré physics under electrical control. Our findings more than double the accessible energy range for applications based on interlayer excitons.

PubMed Disclaimer

References

    1. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018). - DOI - PubMed
    1. Islam, M. N. et al. Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides. Appl. Phys. Lett. 50, 1098–1100 (1987). - DOI
    1. Lin, K.-Q. et al. Twist-angle engineering of excitonic quantum interference and optical nonlinearities in stacked 2D semiconductors. Nat. Commun. 12, 1553 (2021). - DOI - PubMed - PMC
    1. Lin, K.-Q. et al. Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2. Nat. Commun. 12, 5500 (2021). - DOI - PubMed - PMC
    1. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). - DOI - PubMed

LinkOut - more resources