Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 5;21(1):485.
doi: 10.1186/s12916-023-03197-8.

Proteomic insights into the associations between obesity, lifestyle factors, and coronary artery disease

Affiliations

Proteomic insights into the associations between obesity, lifestyle factors, and coronary artery disease

Fangkun Yang et al. BMC Med. .

Abstract

Background: We aimed to investigate the protein pathways linking obesity and lifestyle factors to coronary artery disease (CAD).

Methods: Summary-level genome-wide association statistics of CAD were obtained from the CARDIoGRAMplusC4D consortium (60,801 cases and 123,504 controls) and the FinnGen study (R8, 39,036 cases and 303,463 controls). Proteome-wide Mendelian randomization (MR) analysis was conducted to identify CAD-associated blood proteins, supplemented by colocalization analysis to minimize potential bias caused by linkage disequilibrium. Two-sample MR analyses were performed to assess the associations of genetically predicted four obesity measures and 13 lifestyle factors with CAD risk and CAD-associated proteins' levels. A two-step network MR analysis was conducted to explore the mediating effects of proteins in the associations between these modifiable factors and CAD.

Results: Genetically predicted levels of 41 circulating proteins were associated with CAD, and 17 of them were supported by medium to high colocalization evidence. PTK7 (protein tyrosine kinase-7), RGMB (repulsive guidance molecule BMP co-receptor B), TAGLN2 (transgelin-2), TIMP3 (tissue inhibitor of metalloproteinases 3), and VIM (vimentin) were identified as promising therapeutic targets. Several proteins were found to mediate the associations between some modifiable factors and CAD, with PCSK9, C1S, AGER (advanced glycosylation end product-specific receptor), and MST1 (mammalian Ste20-like kinase 1) exhibiting highest frequency among the mediating networks.

Conclusions: This study suggests pathways explaining the associations of obesity and lifestyle factors with CAD from alterations in blood protein levels. These insights may be used to prioritize therapeutic intervention for further study.

Keywords: Blood protein; Coronary artery disease; Lifestyle factor; Mediation; Mendelian randomization; Obesity.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Schematic overview of the study design. Abbreviations: CAD, coronary artery disease; IVs, instrumental variables
Fig. 2
Fig. 2
The associations of genetically predicted circulating proteins with CAD risk. A The volcano plot. The color of circle indicates the direction of association. B The forest plot. Odds ratios are scaled to per 1 standard deviation (SD) increase in the genetically predicted circulating proteins levels. C Colocalization analysis. Circle size indicates the colocalization p value for H4 and the color of circle indicates the classification of the evidence. Abbreviations: CAD, coronary artery disease; CI, confidence interval; OR, odds ratio
Fig. 3
Fig. 3
Two-sample Mendelian randomization analyses for the associations of genetically predicted obesity measures and lifestyle factors with the risk of coronary artery disease. Abbreviations: BMI, body mass index; CI, confidence interval; MVPA, moderate to vigorous physical activity; OR, odds ratio; VAT, visceral adipose tissue; VPA, vigorous physical activity; WC, waist circumference; WHR, waist-to-hip ratio
Fig. 4
Fig. 4
Two-step network mediation analysis connecting the obesity measures and lifestyle factors to coronary artery disease through the modulation of specific circulating proteins. A The overview of potential causal mediating network. B The proportion of the association between obesity and coronary artery disease mediated by circulating proteins. C The proportion of the association between of physical activity and sedentary behaviors with coronary artery disease mediated by circulating proteins. D The frequency of circulating proteins involved in the mediating network connecting modifiable factors to CAD risk. Abbreviations: BMI, body mass index; VAT, visceral adipose tissue; VPA, vigorous physical activity; WHR, waist-to-hip ratio; WC, waist circumference

References

    1. Stone PH, Libby P, Boden WE. Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management-the plaque hypothesis: a narrative review. JAMA Cardiol. 2023;8:192–201. doi: 10.1001/jamacardio.2022.3926. - DOI - PMC - PubMed
    1. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407–77. doi: 10.1093/eurheartj/ehz425. - DOI - PubMed
    1. Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18:331–44. doi: 10.1038/nrg.2016.160. - DOI - PMC - PubMed
    1. Safiri S, Karamzad N, Singh K, Carson-Chahhoud K, Adams C, Nejadghaderi SA, et al. Burden of ischemic heart disease and its attributable risk factors in 204 countries and territories, 1990–2019. Eur J Prev Cardiol. 2022;29:420–31. doi: 10.1093/eurjpc/zwab213. - DOI - PubMed
    1. Herrington DM, Mao C, Parker SJ, Fu Z, Yu G, Chen L, et al. Proteomic architecture of human coronary and aortic atherosclerosis. Circulation. 2018;137:2741–56. doi: 10.1161/CIRCULATIONAHA.118.034365. - DOI - PMC - PubMed

Publication types