Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma
- PMID: 38051950
- DOI: 10.1097/HEP.0000000000000709
Inhibition of CAF-1 histone chaperone complex triggers cytosolic DNA and dsRNA sensing pathways and induces intrinsic immunity of hepatocellular carcinoma
Abstract
Background and aims: Chromatin assembly factor 1 (CAF-1) is a replication-dependent epigenetic regulator that controls cell cycle progression and chromatin dynamics. In this study, we aim to investigate the immunomodulatory role and therapeutic potential of the CAF-1 complex in HCC.
Approach and results: CAF-1 complex knockout cell lines were established using the CRISPR/Cas9 system. The effects of CAF-1 in HCC were studied in HCC cell lines, nude mice, and immunocompetent mice. RNA-sequencing, ChIP-Seq, and assay for transposase accessible chromatin with high-throughput sequencing (ATAC-Seq) were used to explore the changes in the epigenome and transcriptome. CAF-1 complex was significantly upregulated in human and mouse HCCs and was associated with poor prognosis in patients with HCC. Knockout of CAF-1 remarkably suppressed HCC growth in both in vitro and in vivo models. Mechanistically, depletion of CAF-1 induced replicative stress and chromatin instability, which eventually led to cytoplasmic DNA leakage as micronuclei. Also, chromatin immunoprecipitation sequencing analyses revealed a massive H3.3 histone variant replacement upon CAF-1 knockout. Enrichment of euchromatic H3.3 increased chromatin accessibility and activated the expression of endogenous retrovirus elements, a phenomenon known as viral mimicry. However, cytosolic micronuclei and endogenous retroviruses are recognized as ectopic elements by the stimulator of interferon genes and dsRNA viral sensing pathways, respectively. As a result, the knockout of CAF-1 activated inflammatory response and antitumor immune surveillance and thereby significantly enhanced the anticancer effect of immune checkpoint inhibitors in HCC.
Conclusions: Our findings suggest that CAF-1 is essential for HCC development; targeting CAF-1 may awaken the anticancer immune response and may work cooperatively with immune checkpoint inhibitor treatment in cancer therapy.
Copyright © 2023 American Association for the Study of Liver Diseases.
References
-
- Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.
-
- Cheu JWS, Wong CCL. Mechanistic rationales guiding combination hepatocellular carcinoma therapies involving immune checkpoint inhibitors. Hepatology. 2021;74:2264–76.
-
- Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell. 2018;174:549–63 e19.
-
- Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–86.
-
- Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–73.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials