Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul;61(7):4102-4115.
doi: 10.1007/s12035-023-03832-8. Epub 2023 Dec 7.

Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway

Affiliations

Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway

Yuhan Wu et al. Mol Neurobiol. 2024 Jul.

Abstract

Depression is a common psychological disease with high morbidity and mortality. Recently, the involvement of synaptic plasticity in the pathogenesis of depression has shed light on the direction of developing novel antidepressants. Levomilnacipran is a newly approved medication for the treatment of adult major depressive disorder. However, the detailed mechanisms underlying its antidepressant-like effects have yet to be illuminated. In this study, we aimed to investigate the role of levomilnacipran in regulating synaptic plasticity and explore the possible molecular mechanisms of its antidepressant effects using a rat model of depression induced by lipopolysaccharide (LPS). The results demonstrated that levomilnacipran (30 mg/kg, i.p.) significantly ameliorated depression-like behaviors in rats, alleviated the dysregulation of synaptic plasticity, and suppressed neuroinflammation within hippocampus induced by LPS-treatment. Levomilnacipran increased the expression of postsynaptic dense 95 (PSD-95) and synaptophysin (Syn) and reversed the imbalance between pro- and anti-inflammatory cytokines within hippocampus of depressed rats. Additionally, levomilnacipran elevated expression level of brain-derived neurotrophic factor (BDNF), accompanied by increased tyrosine kinase B (TrkB), phosphorylated phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR). Taken together, these results suggest that levomilnacipran may exert antidepressant effects via upregulating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway to improve synaptic plasticity. These findings reveal potential mechanisms for the antidepressant effects of levomilnacipran and offer new insights into the treatments for depression.

Keywords: BDNF; Depression; Levomilnacipran; Neuroinflammation; Synaptic plasticity.

PubMed Disclaimer

References

    1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25 - PubMed - DOI
    1. Collaborators GBDMD (2022) Global, regional, and national burden of 12 mental disorders in 204 countries and territories 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9:137–150 - DOI
    1. Castren E (2013) Neuronal network plasticity and recovery from depression. JAMA Psychiat 70:983–989 - DOI
    1. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, Rumsey JM, Hicks R, Cameron J, Chen D et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134:1591–1609 - PubMed - PMC - DOI
    1. Castren E (2005) Is mood chemistry? Nat Rev Neurosci 6:241–246 - PubMed - DOI

MeSH terms

LinkOut - more resources