Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;11(7):e2308238.
doi: 10.1002/advs.202308238. Epub 2023 Dec 8.

Copper-Metallized Porous N-Heterocyclic Carbene Ligand Polymer-Catalyzed Regio- and Stereoselective 1,2-Carboboration of Alkynes

Affiliations

Copper-Metallized Porous N-Heterocyclic Carbene Ligand Polymer-Catalyzed Regio- and Stereoselective 1,2-Carboboration of Alkynes

Jun-Song Jia et al. Adv Sci (Weinh). 2024 Feb.

Abstract

Alkenylboronates are highly versatile building blocks and valuable reagents in the synthesis of complex molecules. Compared with that of monosubstituted alkenylboronates, the synthesis of multisubstituted alkenylboronates is challenging. The copper-catalyzed carboboration of alkynes is an operationally simple and straightforward method for synthesizing bis/trisubstituted alkenylboronates. In this work, a series of copper-metallized N-Heterocyclic Carbene (NHC) ligand porous polymer catalysts are designed and synthesized in accordance with the mechanism of carboboration. By using CuCl@POL-NHC-Ph as the optimal nanocatalyst, this study realizes the β-regio- and stereoselective (syn-addition) 1,2-carboboration of alkynes (regioselectivity up to >99:1) with satisfactory yields and a wide range of substrates. This work not only overcomes the selectivity of carboboration but also provides a new strategy for the design of nanocatalysts and their application in organic synthesis.

Keywords: 1,2-carboboration; NHC catalysis; catalyst design; nano-catalysis; stereoselectivity and regioselectivity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Scheme 1
Scheme 1
Status of research on alkyne 1,2‐carboboration reactions.
Scheme 2
Scheme 2
Scope of alkynes for 1,2‐carboboration with 1‐iodobutane and B2pin2. [a] Reaction conditions: 1 (0.5 mmol), 2a (2 equiv), 3a (1.5 equiv), NaO t Bu (1.5 equiv), CuCl@POL‐NHC‐Ph (20 mg, 4.67 wt.% Cu), DMF (0.25 M), 60°C, 7 h. Isolated yield. The value of β‐[B]:α‐[B] was determined by 1H NMR. [b] Room temperature. [c] 1 Equiv B2pin2. [d] The reaction time was 12 h.
Scheme 3
Scheme 3
Scope of the electrophile and [B]–[B] reaction with phenylacetylene. [a] Reaction conditions: 1a (0.5 mmol), 2 (2 equiv), 3 (1.5 equiv), NaO t Bu (1.5 equiv), CuCl@POL‐NHC‐Ph (20 mg, 4.67 wt.% Cu), DMF (0.25 M), 60 °C, 7 h. Isolated yield. The value of β‐[B]:α‐[B] was determined by 1H NMR. [b] Room temperature. [c] The reaction time was 12 h.
Scheme 4
Scheme 4
Practicality of alkyne 1,2‐carboboration. A) Gram‐scale synthesis and transformations of 4a: (I) 4‐iodoanisole, Pd(PPh3)4, NaOH, 1,4‐dioxane, 100 °C; (II) NaN3, CuSO4, MeOH, 50 °C, 12 h; (III) allyl alcohol, Cu(OAc)2, NEt3, rt, 16 h; (IV) tert‐butyl acrylate, Pd(OAc)2, 1,10‐phenanthroline, O2, DMA, 80°C, 12 h; (V) CuCl2, THF/MeOH/H2O, 100 °C, 24 h; (VI) CuBr2, EtOH/H2O, 100 °C, 24 h. (B) Synthetic applications.
Figure 1
Figure 1
Results of leaching (left) and cycle (right) experiments. Reaction conditions: 1a (0.5 mmol), 2a (2 equiv), 3a (1.5 equiv), NaO t Bu (1.5 equiv), recycled CuCl@POL‐NHC‐Ph (20 mg), DMF (0.25 M), 60 °C, 7 h. Isolated yield. The filtering time is ≈1 min.
Figure 2
Figure 2
Characterization results. a) Scanning electron microscopy image of CuCl@POL‐NHC‐Ph. b) TEM image of CuCl@POL‐NHC‐Ph. c) HAADF image of CuCl@POL‐NHC‐Ph. d) Energy‐dispersive X‐ray spectroscopy elemental mapping analysis of CuCl@POL‐NHC‐Ph. e) N2 adsorption–desorption isotherms, f) pore size distribution curves, g) Cu 2p XPS spectra of fresh CuCl@POL‐NHC‐Ph, and h) thermogravimetric analysis of CuCl@POL‐NHC‐Ph.
Figure 3
Figure 3
Results of DFT calculation.
Scheme 5
Scheme 5
Possible catalytic cycles of copper‐catalyzed 1,2‐carboboration.

References

    1. a) Hall D., in Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Wiley‐VCH, Weinheim: 2005;
    2. b) Miyaura N., Suzuki A., Chem. Rev. 1995, 95, 2457;
    3. c) Tobisu M., Chatani N., Angew. Chem., Int. Ed. 2009, 48, 3565; - PubMed
    4. d) Hayashi T., Yamasaki K., Chem. Rev. 2003, 103, 2829; - PubMed
    5. e) Wu T. R., Chong J. M., J. Am. Chem. Soc. 2007, 129, 4908; - PubMed
    6. f) Reiter M., Torssell S., Lee S., Macmillan D. W. C., Chem. Sci. 2010, 1, 37. - PMC - PubMed
    1. a) Smoum R., Rubinstein A., Dembitsky V. M., Srebnik M., Chem. Rev. 2012, 112, 4156; - PubMed
    2. b) Touchet S., Carreaux F., Carboni B., Bouillon A., Boucher J.‐L., Chem. Soc. Rev. 2011, 40, 3895; - PubMed
    3. c) Gao T.‐T., Lu H.‐X., Gao P.‐C., Li B.‐J., Nat. Commun. 2021, 12, 3776; - PMC - PubMed
    4. d) Jin S., Li J., Liu K., Ding W.‐Y., Wang S., Huang X., Li X., Yu P., Song Q., Nat. Commun. 2022, 13, 3524. - PMC - PubMed
    1. a) Obligacion J. V., Neely J. M., Yazdani A. N., Pappas I., Chirik P. J., J. Am. Chem. Soc. 2015, 137, 5855; - PubMed
    2. b) Bismuto A., Thomas S. P., Cowley M. J., Angew. Chem., Int. Ed. 2016, 55, 15356; - PubMed
    3. c) Gorgas N., Alves L. G., Stöger B., Martins A. M., Veiros L. F., Kirchner K., J. Am. Chem. Soc. 2017, 139, 8130; - PubMed
    4. d) Nieto‐Sepulveda E., Bage A. D., Evans L. A., Hunt T. A., Leach A. G., Thomas S. P., Lloyd‐Jones G. C., J. Am. Chem. Soc. 2019, 141, 18600; - PubMed
    5. e) Magre M., Maity B., Falconnet A., Cavallo L., Rueping M., Angew. Chem., Int. Ed. 2019, 58, 7025; - PubMed
    6. f) Zhang J., Li X., Li T., Zhang G., Wan K., Ma Y., Fang R., Szostak R., Szostak M., ACS Catal. 2022, 12, 15323;
    7. g) Zhang Y.‐D., Li X.‐Y., Mo Q.‐K., Shi W.‐B., Zhao J.‐B., Zhu S.‐F., Angew. Chem., Int. Ed. 2022, 61, e202208473; - PubMed
    8. h) Chen J., Shen X., Lu Z., Angew. Chem., Int. Ed. 2021, 60, 690; - PubMed
    9. i) Cheng Z., Guo J., Sun Y., Zheng Y., Zhou Z., Lu Z., Angew. Chem., Int. Ed. 2021, 60, 22454. - PubMed
    1. a) Kim‐Lee S.‐H., Mauleón P., Gómez Arrayás R., Carretero J. C., Chem 2021, 7, 2212;
    2. b) Su W., Gong T.‐J., Zhang Q., Zhang Q., Xiao B., Fu Y., ACS Catal. 2016, 6, 6417;
    3. c) Zhou Y., You W., Smith K. B., Brown M. K., Angew. Chem., Int. Ed. 2014, 53, 3475; - PubMed
    4. d) Alfaro R., Parra A., Alemán J., García Ruano J. L., Tortosa M., J. Am. Chem. Soc. 2012, 134, 15165; - PubMed
    5. e) Bin H.‐Y., Wei X., Zi J., Zuo Y.‐J., Wang T.‐C., Zhong C.‐M., ACS Catal. 2015, 5, 6670;
    6. f) Yoshida H., Kageyuki I., Takaki K., Org. Lett. 2013, 15, 952; - PubMed
    7. g) Bidal Y. D., Lazreg F., Cazin C. S. J., ACS Catal. 2014, 4, 1564;
    8. h) Itoh T., Shimizu Y., Kanai M., J. Am. Chem. Soc. 2016, 138, 7528; - PubMed
    9. i) Tai C.‐C., Yu M.‐S., Chen Y.‐L., Chuang W.‐H., Lin T.‐H., Yap G. P. A., Ong T.‐G., Chem. Commun. 2014, 50, 4344. - PubMed
    1. a) Jang H., Zhugralin A. R., Lee Y., Hoveyda A. H., J. Am. Chem. Soc. 2011, 133, 7859; - PubMed
    2. b) Chatt J., Duncanson L. A., J. Chem. Soc. 1953, 2939.

LinkOut - more resources