Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro
- PMID: 3806677
- DOI: 10.1016/0022-2836(86)90451-1
Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro
Abstract
Dissociation of turnip crinkle virus (TCV) at elevated pH and ionic strength produces free dimers of the coat protein and a ribonucleoprotein complex that contains the viral RNA, six coat-protein subunits, and the minor protein species, p80 (a covalently linked coat-protein dimer). This "rp-complex" is stable for several days in high salt at pH 8.5. Reassembly of TCV can be accomplished under physiological conditions, using isolated coat protein and either rp-complex or protein-free RNA. If rp-complex is used in reassembly, the same subunits remain bound to RNA on subsequent dissociation; if free RNA is used, rp-complex is regenerated. In both cases, the assembly is selective for viral RNA in competition experiments with heterologous RNA. Electron microscopy shows that assembly proceeds by continuous growth of a shell from an initiating structure, rather than by formation of distinct intermediates. We suggest that rp-complex is the initiating structure, suggest a model based on the organization of the TCV particle, and propose a mechanism for TCV assembly.
Similar articles
-
Structure and assembly of turnip crinkle virus. VI. Identification of coat protein binding sites on the RNA.J Mol Biol. 1990 Jul 5;214(1):85-95. doi: 10.1016/0022-2836(90)90148-F. J Mol Biol. 1990. PMID: 2370670
-
Interactions between viral coat protein and a specific binding region on turnip crinkle virus RNA.J Mol Biol. 1991 Dec 5;222(3):437-43. doi: 10.1016/0022-2836(91)90483-m. J Mol Biol. 1991. PMID: 1748986
-
Structure of turnip crinkle virus. III. Identification of a unique coat protein dimer.J Mol Biol. 1986 Oct 20;191(4):721-5. doi: 10.1016/0022-2836(86)90456-0. J Mol Biol. 1986. PMID: 3806680
-
Defective interfering viruses.Annu Rev Microbiol. 1973;27:101-17. doi: 10.1146/annurev.mi.27.100173.000533. Annu Rev Microbiol. 1973. PMID: 4356530 Review. No abstract available.
-
The self-assembly of spherical plant viruses.Adv Virus Res. 1970;16:99-134. doi: 10.1016/s0065-3527(08)60022-6. Adv Virus Res. 1970. PMID: 4924992 Review. No abstract available.
Cited by
-
Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways.ACS Nano. 2020 Jul 28;14(7):8724-8734. doi: 10.1021/acsnano.0c03207. Epub 2020 Jul 7. ACS Nano. 2020. PMID: 32633498 Free PMC article.
-
Visualizing large RNA molecules in solution.RNA. 2012 Feb;18(2):284-99. doi: 10.1261/rna.027557.111. Epub 2011 Dec 21. RNA. 2012. PMID: 22190747 Free PMC article.
-
Understanding the concentration dependence of viral capsid assembly kinetics--the origin of the lag time and identifying the critical nucleus size.Biophys J. 2010 Mar 17;98(6):1065-74. doi: 10.1016/j.bpj.2009.11.023. Biophys J. 2010. PMID: 20303864 Free PMC article.
-
Structure-function relation of the NH2-terminal domain of the Semliki Forest virus capsid protein.J Virol. 1995 Mar;69(3):1556-63. doi: 10.1128/JVI.69.3.1556-1563.1995. J Virol. 1995. PMID: 7853489 Free PMC article.
-
Revealing the density of encoded functions in a viral RNA.Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2227-32. doi: 10.1073/pnas.1420812112. Epub 2015 Feb 2. Proc Natl Acad Sci U S A. 2015. PMID: 25646435 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources