Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Dec 2;23(23):9566.
doi: 10.3390/s23239566.

A Review of Federated Learning in Agriculture

Affiliations
Review

A Review of Federated Learning in Agriculture

Krista Rizman Žalik et al. Sensors (Basel). .

Abstract

Federated learning (FL), with the aim of training machine learning models using data and computational resources on edge devices without sharing raw local data, is essential for improving agricultural management and smart agriculture. This study is a review of FL applications that address various agricultural problems. We compare the types of data partitioning and types of FL (horizontal partitioning and horizontal FL, vertical partitioning and vertical FL, and hybrid partitioning and transfer FL), architectures (centralized and decentralized), levels of federation (cross-device and cross-silo), and the use of aggregation algorithms in different reviewed approaches and applications of FL in agriculture. We also briefly review how the communication challenge is solved by different approaches. This work is useful for gaining an overview of the FL techniques used in agriculture and the progress made in this field.

Keywords: aggregation algorithms; agriculture; architecture; communication bottleneck; data partitioning; federated learning; federation scale.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Architecture for a centralized FL system.
Figure 2
Figure 2
The architectures, the levels of federation, the data partitions, and the used aggregation algorithms for all considered FL systems in agriculture.

Similar articles

  • Evaluating Federated Learning Simulators: A Comparative Analysis of Horizontal and Vertical Approaches.
    Elshair IM, Khanzada TJS, Shahid MF, Siddiqui S. Elshair IM, et al. Sensors (Basel). 2024 Aug 9;24(16):5149. doi: 10.3390/s24165149. Sensors (Basel). 2024. PMID: 39204845 Free PMC article.
  • The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach.
    Matschinske J, Späth J, Bakhtiari M, Probul N, Kazemi Majdabadi MM, Nasirigerdeh R, Torkzadehmahani R, Hartebrodt A, Orban BA, Fejér SJ, Zolotareva O, Das S, Baumbach L, Pauling JK, Tomašević O, Bihari B, Bloice M, Donner NC, Fdhila W, Frisch T, Hauschild AC, Heider D, Holzinger A, Hötzendorfer W, Hospes J, Kacprowski T, Kastelitz M, List M, Mayer R, Moga M, Müller H, Pustozerova A, Röttger R, Saak CC, Saranti A, Schmidt HHHW, Tschohl C, Wenke NK, Baumbach J. Matschinske J, et al. J Med Internet Res. 2023 Jul 12;25:e42621. doi: 10.2196/42621. J Med Internet Res. 2023. PMID: 37436815 Free PMC article.
  • Securing federated learning with blockchain: a systematic literature review.
    Qammar A, Karim A, Ning H, Ding J. Qammar A, et al. Artif Intell Rev. 2023;56(5):3951-3985. doi: 10.1007/s10462-022-10271-9. Epub 2022 Sep 16. Artif Intell Rev. 2023. PMID: 36160367 Free PMC article.
  • Federated Learning Models in Decentralized Critical Infrastructure.
    Siniosoglou I, Bibi S, Kollias KF, Fragulis G, Radoglou-Grammatikis P, Lagkas T, Argyriou V, Vitsas V, Sarigiannidis P. Siniosoglou I, et al. In: Sofia RC, Soldatos J, editors. Shaping the Future of IoT with Edge Intelligence: How Edge Computing Enables the Next Generation of IoT Applications. Abingdon (UK): River Publishers; 2024 Jan. Chapter 5. In: Sofia RC, Soldatos J, editors. Shaping the Future of IoT with Edge Intelligence: How Edge Computing Enables the Next Generation of IoT Applications. Abingdon (UK): River Publishers; 2024 Jan. Chapter 5. PMID: 38564569 Free Books & Documents. Review.
  • Reviewing Federated Machine Learning and Its Use in Diseases Prediction.
    Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Moshawrab M, et al. Sensors (Basel). 2023 Feb 13;23(4):2112. doi: 10.3390/s23042112. Sensors (Basel). 2023. PMID: 36850717 Free PMC article. Review.

Cited by

References

    1. Samuel A. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959;3:210–229. doi: 10.1147/rd.33.0210. - DOI
    1. Ethem A. Introduction to Machine Learning. 4th ed. MIT; Cambridge, MA, USA: 2020. pp. xix, 1–3, 13–18.
    1. Benos L., Tagarakis A.C., Dolias G., Berruto R., Kateris D., Bochtis D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors. 2021;21:3758. doi: 10.3390/s21113758. - DOI - PMC - PubMed
    1. Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. Machine Learning in Agriculture: A Review. Sensors. 2018;18:2674. doi: 10.3390/s18082674. - DOI - PMC - PubMed
    1. LeCun Y., Bengio Y., Hinton G. Deep Learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. - DOI - PubMed

LinkOut - more resources