Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Feb;258(Pt 2):128691.
doi: 10.1016/j.ijbiomac.2023.128691. Epub 2023 Dec 8.

Self-assembly of maltose-albumin nanoparticles for efficient targeting delivery and therapy in liver cancer

Affiliations

Self-assembly of maltose-albumin nanoparticles for efficient targeting delivery and therapy in liver cancer

Lu Wang et al. Int J Biol Macromol. 2024 Feb.

Abstract

The effective delivery and targeted release of drugs within tumor cells are critical factors in determining the therapeutic efficacy of nanomedicine. To achieve this objective, a conjugate of maltose (Mal) and bovine serum albumin (BSA) was synthesized by the Maillard reaction and self-assembled into nanoparticles with active-targeting capabilities upon pH/heating induction. This nanoparticle could be effectively loaded with doxorubicin (DOX) to form stable nanodrugs (Mal-BSA/DOX) that were sensitive to low pH or high glutathione (GSH), thereby achieving a rapid drug release (96.82 % within 24 h). In vitro cell experiments indicated that maltose-modified BSA particles efficiently enhance cellular internalization via glucose transporters (GLUT)-mediated endocytosis, resulting in increased intracellular DOX levels and heightened expression of γ-H2AX. Consequently, these results ultimately lead to selective tumor cells death, as evidenced by an IC50 value of 3.83 μg/mL in HepG2 cells compared to 5.87 μg/mL in 293t cells. The efficacy of Mal-BSA/DOX in tumor targeting therapy has been further confirmed by in vivo studies, as it effectively delivered a higher concentration of DOX to tumor tissue. This targeted delivery approach not only reduces the systemic toxicity of DOX but also effectively inhibits tumor growth (TGI, 75.95 %). These findings contribute valuable insights into the advancement of targeting-albumin nanomedicine and further support its potential in tumor treatment.

Keywords: BSA; Glucose targeting; Maillard reaction; Maltose; Self-assembly.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no conflict of interest.

LinkOut - more resources