In response to Grivas et al
- PMID: 38077273
- PMCID: PMC10701115
- DOI: 10.1016/j.phro.2023.100514
In response to Grivas et al
Conflict of interest statement
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
-
- van den Berg I., Savenije M.H.F., Teunissen F.R., van de Pol S.M.G., Rasing M.J.A., van Melick H.H.E., et al. Deep learning for automated contouring of neurovascular structures on magnetic resonance imaging for prostate cancer patients. Phys Imaging Radiat Oncol. 2023;26 doi: 10.1016/j.phro.2023.100453. - DOI - PMC - PubMed
-
- Teunissen F.R., Wortel R.C., Hes J., Willigenburg T., de Groot-van Breugel E.N., de Boer J.C.J., et al. Adaptive magnetic resonance-guided neurovascular-sparing radiotherapy for preservation of erectile function in prostate cancer patients. Phys Imaging Radiat Oncol. 2021;20:5–10. doi: 10.1016/j.phro.2021.09.002. - DOI - PMC - PubMed
-
- Grivas N., van der Roest R.C., de Korne C.M., KleinJan G.H., Sikorska K., Schoots I.G., et al. The value of periprostatic fascia thickness and fascia preservation as prognostic factors of erectile function after nerve-sparing robot-assisted radical prostatectomy. World J Urol. 2019;37:309–315. doi: 10.1007/s00345-018-2387-3. - DOI - PubMed
-
- Bin R.R., Albert M.V. In: Bridging Human Intelligence and Artificial Intelligence. Educational Communications and Technology: Issues and Innovations. Albert M.V., Lin L., Spector M.J., Dunn L.S., editors. Springer; Cham: 2022. Transfer Learning: Leveraging Trained Models on Novel Tasks; pp. 65–74. - DOI
LinkOut - more resources
Full Text Sources