Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec:87:232-243.
doi: 10.1016/j.jsr.2023.09.019. Epub 2023 Sep 29.

Modeling collision avoidance maneuvers for micromobility vehicles

Affiliations
Free article

Modeling collision avoidance maneuvers for micromobility vehicles

Tianyou Li et al. J Safety Res. 2023 Dec.
Free article

Abstract

Introduction: In recent years, as novel micromobility vehicles (MMVs) have hit the market and rapidly gained popularity, new challenges in road safety have also arisen. There is an urgent need for validated models that comprehensively describe the behavior of such novel MMVs. This study aims to compare the longitudinal and lateral control of bicycles and e-scooters in a collision-avoidance scenario from a top-down perspective, and to propose appropriate quantitative models for parameterizing and predicting the trajectories of the avoidance-braking and steering-maneuvers.

Method: We compared a large e-scooter and a light e-scooter with a bicycle (in assisted and non-assisted modes) in field trials to determine whether these new vehicles have different maneuverability constraints when avoiding a rear-end collision by braking and/or steering.

Results: Braking performance in terms of deceleration and jerk varies among the different types of vehicles; specifically, e-scooters are not as effective at braking as bicycles, but the large e-scooter demonstrated better braking performance than the light one. No statistically significant difference was observed in the steering performance of the vehicles. Bicycles were perceived as more stable, maneuverable, and safe than e-scooters. The study also presents arctangent kinematic models for braking and steering, which demonstrate better accuracy and informativeness than linear models.

Conclusions: This study demonstrates that the new micromobility solutions have some maneuverability characteristics that differ significantly from those of bicycles, and even within their own kind. Steering could be a more efficient collision-avoidance strategy for MMVs than braking under certain circumstances, such as in a rear-end collision. More complicated modeling for MMV kinematics can be beneficial but needs validation.

Practical applications: The proposed arctangent models could be used in new advanced driving assistance systems to prevent crashes between cars and MMV users. Micromobility safety could be improved by educating MMV riders to adapt their behavior accordingly. Further, knowledge about the differences in maneuverability between e-scooters and bicycles could inform infrastructure design, and traffic regulations.

Keywords: Active safety; Bicycles; Cycling safety; E-scooters; Micromobility vehicles.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources