Modulating functionally-distinct vagus nerve fibers using microelectrodes and kilohertz frequency electrical stimulation
- PMID: 38082599
- DOI: 10.1109/EMBC40787.2023.10340796
Modulating functionally-distinct vagus nerve fibers using microelectrodes and kilohertz frequency electrical stimulation
Abstract
Modulation of functionally distinct nerve fibers with bioelectronic devices provides a therapeutic opportunity for various diseases. In this study, we began by developing a computational model including four major subtypes of myelinated fibers and one unmyelinated fiber. Second, we used an intrafascicular electrode to perform kHz-frequency electric stimulation to preferentially modulate a population of fibers. Our model suggests that fiber physical properties and electrode-to-fascicle distance severely impacts stimulus-response relationships. Large diameter fibers (Aα- and Aβ-) were only minimally influenced by the fascicle size and electrode location, while smaller diameter fibers (Aδ-, B- and C-) indicated a stronger dependency.Clinical Relevance- Our findings support the possibility of selectively modulating functionally-distinct nerve fibers using electrical stimulation in a small, localized region. Our model provides an effective tool to design next-generation implantable devices and therapeutic stimulation strategies toward minimizing off-target effects.