Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul:2023:1-4.
doi: 10.1109/EMBC40787.2023.10341002.

Comparing the Performance of Multiple Small-Data Personalized Tacrolimus Dosing Models for Pediatric Liver Transplant: A Retrospective Study

Comparing the Performance of Multiple Small-Data Personalized Tacrolimus Dosing Models for Pediatric Liver Transplant: A Retrospective Study

Shi-Bei Tan et al. Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul.

Abstract

Tacrolimus is a potent immunosuppressant used after pediatric liver transplant. However, tacrolimus's narrow therapeutic window, reliance on physicians' experience for the dose titration, and intra- and inter-patient variability result in liver transplant patients falling out of the target tacrolimus trough levels frequently. Existing personalized dosing models based on the area-under-the-concentration over time curves require a higher frequency of blood draws than the current standard of care and may not be practically feasible. We present a small-data artificial intelligence-derived platform, CURATE.AI, that uses data from individual patients obtained once daily to model the dose and response relationship and identify suitable doses dynamically. Retrospective optimization using 6 models of CURATE.AI and data from 16 patients demonstrated good predictive performance and identified a suitable model for further investigations.Clinical Relevance- This study established and compared the predictive performance of 6 personalized tacrolimus dosing models for pediatric liver transplant patients and identified a suitable model with consistently good predictive performance based on data from pediatric liver transplant patients.

PubMed Disclaimer

Publication types

LinkOut - more resources