Will variants of uncertain significance still exist in 2030?
- PMID: 38086381
- PMCID: PMC10806733
- DOI: 10.1016/j.ajhg.2023.11.005
Will variants of uncertain significance still exist in 2030?
Abstract
In 2020, the National Human Genome Research Institute (NHGRI) made ten "bold predictions," including that "the clinical relevance of all encountered genomic variants will be readily predictable, rendering the diagnostic designation 'variant of uncertain significance (VUS)' obsolete." We discuss the prospects for this prediction, arguing that many, if not most, VUS in coding regions will be resolved by 2030. We outline a confluence of recent changes making this possible, especially advances in the standards for variant classification that better leverage diverse types of evidence, improvements in computational variant effect predictor performance, scalable multiplexed assays of variant effect capable of saturating the genome, and data-sharing efforts that will maximize the information gained from each new individual sequenced and variant interpreted. We suggest that clinicians and researchers can realize a future where VUSs have largely been eliminated, in line with the NHGRI's bold prediction. The length of time taken to reach this future, and thus whether we are able to achieve the goal of largely eliminating VUSs by 2030, is largely a consequence of the choices made now and in the next few years. We believe that investing in eliminating VUSs is worthwhile, since their predominance remains one of the biggest challenges to precision genomic medicine.
Copyright © 2023 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests H.L.R. is an associate editor for AJHG.
References
-
- Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. - PMC - PubMed
-
- Pejaver V., Byrne A.B., Feng B.-J., Pagel K.A., Mooney S.D., Karchin R., O’Donnell-Luria A., Harrison S.M., Tavtigian S.V., Greenblatt M.S., et al. Calibration of computational tools for missense variant pathogenicity classification and ClinGen recommendations for PP3/BP4 criteria. Am. J. Hum. Genet. 2022;109:2163–2177. - PMC - PubMed
-
- Walker L.C., Hoya M.d.l., Wiggins G.A.R., Lindy A., Vincent L.M., Parsons M.T., Canson D.M., Bis-Brewer D., Cass A., Tchourbanov A., et al. Using the ACMG/AMP framework to capture evidence related to predicted and observed impact on splicing: Recommendations from the ClinGen SVI Splicing Subgroup. Am. J. Hum. Genet. 2023;110:1046–1067. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources