Point-process modeling of secondary crashes
- PMID: 38091320
- PMCID: PMC10718442
- DOI: 10.1371/journal.pone.0295343
Point-process modeling of secondary crashes
Abstract
Secondary crashes or crashes that occur in the wake of a preceding or primary crash are among the most critical incidents occurring on highways, due to the exceptional danger they present to the first responders and victims of the primary crash. In this work, we developed a self-exciting temporal point process to analyze crash events data and classify it into primary and secondary crashes. Our model uses a self-exciting function to describe secondary crashes while primary crashes are modeled using a background rate function. We fit the model to crash incidents data from the Florida Department of Transportation, on Interstate-4 (I-4) highway for the years 2015-2017, to determine the model parameters. These are used to estimate the probability that a given crash is secondary crash and to find queue times. To represent the periodically varying traffic levels and crash incidents, we model the background rate, as a stationary function, a sinusoidal non-stationary function, and a piecewise non-stationary function. We show that the sinusoidal non-stationary background rate fits the traffic data better and replicates the daily and weekly peaks in crash events due to traffic rush hours. Secondary crashes are found to account for up to 15.09% of traffic incidents, depending on the city on the I-4 Highway.
Copyright: © 2023 Motagi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
There are no competing interests for this study.
Figures
References
-
- NHTSA Estimates for 2022 Show Roadway Fatalities Remain Flat After Two Years of Dramatic Increases. In: https://www.nhtsa.gov/press-releases/traffic-crash-death-estimates-2022#.... 20 Apr 2023.
-
- Mohler GO, Short MB, Brantingham PJ, Schoenberg FP, Tita GE. Self-exciting point process modeling of crime. J Am Stat Assoc. 2011;106: 100–108.
-
- Hawkes AG. Spectra of Some Self-Exciting and Mutually Exciting Point Processes. 1971. Available: https://about.jstor.org/terms.
-
- Aït-Sahalia Y, Cacho-Diaz J, Laeven RJA. Modeling financial contagion using mutually exciting jump processes. J financ econ. 2015;117: 585–606.
-
- Mitchell L, Cates ME. Hawkes process as a model of social interactions: a view on video dynamics. J Phys A Math Theor. 2009;43: 45101.
MeSH terms
LinkOut - more resources
Full Text Sources
