Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 5:308:123720.
doi: 10.1016/j.saa.2023.123720. Epub 2023 Dec 1.

Aramid nanofiber membrane decorated with monodispersed silver nanoparticles as robust and flexible SERS chips for trace detection of multiple toxic substances

Affiliations

Aramid nanofiber membrane decorated with monodispersed silver nanoparticles as robust and flexible SERS chips for trace detection of multiple toxic substances

Sihang Zhang et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

Aramid nanofibers (ANFs) as an innovative nanoscale building block exhibit great potential for novel high-performance multifunctional membranes attributed to their extraordinary performance. However, the application of aramid nanofibers in the field of surface enhanced Raman scattering (SERS) sensing has been rarely reported. In this work, aramid nanofibers derived from commercial Kevlar fibers were synthesized by a facile dimethyl sulfoxide/potassium hydroxide (DMSO/KOH) solution treatment. The monodispersed silver nanoparticle-decorated aramid nanofiber (m-Ag@ANF) membranes were constructed by an efficient vacuum filtration technique. Taking advantages of unique intrinsic properties of ANF, the m-Ag@ANF substrates exhibit good flexibility, excellent mechanical properties and prominent thermal stability. Besides, due to the abundance of positively charged amino-group on the ANF substrates, the negatively charged m-AgNPs were uniformly and firmly deposited on the surface of ANF substrate through electrostatic interactions. As a result, the optimal flexible m-Ag-9@ANF SERS substrate exhibits high sensitivity of 10-9 M for methylene blue (MB) and excellent signal reproducibility (RSD = 6.37 %), as well as outstanding signal stability (up to 15 days). Besides, the 2D Raman mapping and FDTD simulations further reveal prominent signal homogeneity and strong electric field distribution for flexible m-Ag-9@ANF SERS substrate. Finally, it is demonstrated that the flexible m-Ag-9@ANF SERS substrate can also be used for detection of toxic molecules on irregular surfaces by a feasible paste-and-read process. The m-Ag@ANF paper exhibits potential applications as a flexible, low-cost, robust and stable SERS sensing platform for trace detection of toxic materials.

Keywords: Aramid nanofibers; Flexible SERS substrate; Membrane; Monodispersed Ag nanoparticles; Toxic materials.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources