Deep learning MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers
- PMID: 38096921
- DOI: 10.1016/j.radonc.2023.110052
Deep learning MRI-only synthetic-CT generation for pelvis, brain and head and neck cancers
Abstract
Background and purpose: MRI-only planning relies on dosimetrically accurate synthetic-CT (sCT) generation to allow dose calculation. Here we validated the dosimetric accuracy of sCTs generated using a deep learning algorithm for pelvic, brain and head and neck (H&N) cancer sites using variable MRI data from multiple scanners.
Methods: sCT generation models were trained using a cycle-GAN algorithm, using paired MRI-CT patient data. Input MRI sequences were: T2 for pelvis, T1 with gadolinium (T1Gd) and T2 FLAIR for brain and T1 for H&N. Patient validation sCTs were generated for each site (49 - pelvis, 25 - brain and 30 - H&N). VMAT plans, following local clinical protocols, were calculated on planning CTs and recalculated on sCTs. HU and dosimetric differences were assessed, including DVH differences and gamma index (2 %/2mm).
Results: Mean absolute error (MAE) HU differences were; 48.8 HU (pelvis), 118 HU (T2 FLAIR brain), 126 HU (T1Gd brain) and 124 HU (H&N). Mean primary PTV D95% dose differences for all sites were < 0.2 % (range: -0.9 to 1.0 %). Mean 2 %/2mm and 1 %/1mm gamma pass rates for all sites were > 99.6 % (min: 95.3 %) and > 97.3 % (min: 80.1 %) respectively. For all OARs for all sites, mean dose differences were < 0.4 %.
Conclusion: Generated sCTs had excellent dosimetric accuracy for all sites and sequences. The cycle-GAN model, available on the research version of a commercial treatment planning system, is a feasible method for sCT generation with high clinical utility due to its ability to use variable input data from multiple scanners and sequences.
Keywords: Brain; CycleGAN; H&N; MRI; MRI-only; Pelvis; Synthetic-CT; sCT.
Copyright © 2023 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials