Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Dec 9:2023.12.06.23299616.
doi: 10.1101/2023.12.06.23299616.

Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL

Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL

Yaqi Zhao et al. medRxiv. .

Update in

  • Genomic determinants of response and resistance to inotuzumab ozogamicin in B-cell ALL.
    Zhao Y, Short NJ, Kantarjian HM, Chang TC, Ghate PS, Qu C, Macaron W, Jain N, Thakral B, Phillips AH, Khoury J, Garcia-Manero G, Zhang W, Fan Y, Yang H, Garris RS, Nasr LF, Kriwacki RW, Roberts KG, Konopleva M, Jabbour EJ, Mullighan CG. Zhao Y, et al. Blood. 2024 Jul 4;144(1):61-73. doi: 10.1182/blood.2024023930. Blood. 2024. PMID: 38551807 Free PMC article.

Abstract

Inotuzumab ozogamicin (InO) is an antibody-drug conjugate that delivers calicheamicin to CD22-expressing cells. In a retrospective cohort of InO treated patients with B-cell acute lymphoblastic leukemia, we sought to understand the genomic determinants of response to InO. Acquired CD22 mutations were observed in 11% (3/27) of post-InO relapsed tumor samples. There were multiple CD22 mutations per sample and the mechanisms of CD22 escape included protein truncation, protein destabilization, and epitope alteration. Hypermutation by error-prone DNA damage repair (alternative end-joining, mismatch repair deficiency) drove CD22 escape. Acquired loss-of-function mutations in TP53 , ATM and CDKN2A were observed, suggesting compromise of the G1/S DNA damage checkpoint as a mechanism of evading InO-induced apoptosis. In conclusion, genetic alterations modulating CD22 expression and DNA damage response influence InO efficacy. The escape strategies within and beyond antigen loss to CD22-targeted therapy elucidated in this study provide insights into improving therapeutic approaches and overcoming resistance.

Key points: We identified multiple mechanisms of CD22 antigen escape from inotuzumab ozogamicin, including protein truncation, protein destabilization, and epitope alteration.Hypermutation caused by error-prone DNA damage repair was a driver of CD22 mutation and escape.

PubMed Disclaimer

Publication types