Spatial Biology of Breast Cancer
- PMID: 38110242
- PMCID: PMC11065165
- DOI: 10.1101/cshperspect.a041335
Spatial Biology of Breast Cancer
Abstract
Spatial findings have shaped on our understanding of breast cancer. In this review, we discuss how spatial methods, including spatial transcriptomics and proteomics and the resultant understanding of spatial relationships, have contributed to concepts regarding cancer progression and treatment. In addition to discussing traditional approaches, we examine how emerging multiplex imaging technologies have contributed to the field and how they might influence future research.
Copyright © 2024 Cold Spring Harbor Laboratory Press; all rights reserved.
Similar articles
-
Multiplex Digital Spatial Profiling in Breast Cancer Research: State-of-the-Art Technologies and Applications across the Translational Science Spectrum.Cancers (Basel). 2024 Apr 23;16(9):1615. doi: 10.3390/cancers16091615. Cancers (Basel). 2024. PMID: 38730568 Free PMC article. Review.
-
Deciphering progressive lesion areas in breast cancer spatial transcriptomics via TGR-NMF.Brief Bioinform. 2024 Nov 22;26(1):bbae707. doi: 10.1093/bib/bbae707. Brief Bioinform. 2024. PMID: 39780487 Free PMC article.
-
Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment.Biotechnol J. 2021 Sep;16(9):e2100041. doi: 10.1002/biot.202100041. Epub 2021 Jun 27. Biotechnol J. 2021. PMID: 34125481 Review.
-
Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.Front Immunol. 2024 Dec 19;15:1499301. doi: 10.3389/fimmu.2024.1499301. eCollection 2024. Front Immunol. 2024. PMID: 39749323 Free PMC article. Review.
-
Spatial transcriptomics in health and disease.Nat Rev Nephrol. 2024 Oct;20(10):659-671. doi: 10.1038/s41581-024-00841-1. Epub 2024 May 8. Nat Rev Nephrol. 2024. PMID: 38719971 Free PMC article. Review.
References
-
- Ali HR, Dariush A, Provenzano E, Bardwell H, Abraham JE, Iddawela M, Vallier AL, Hiller L, Dunn JA, Bowden SJ, et al. 2016a. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res 18: 21. 10.1186/s13058-016-0682-8 - DOI - PMC - PubMed
-
- Ali HR, Dariush A, Thomas J, Provenzano E, Dunn J, Hiller L, Vallier AL, Abraham J, Piper T, Bartlett JMS, et al. 2017. Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial. Ann Oncol 28: 1832–1835. 10.1093/annonc/mdx266 - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical