Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Dec 7;76(12):ovad142.
doi: 10.1093/lambio/ovad142.

Simultaneous detection of mycotoxigenic Aspergillus species of sections Circumdati and Flavi using multiplex digital PCR

Affiliations

Simultaneous detection of mycotoxigenic Aspergillus species of sections Circumdati and Flavi using multiplex digital PCR

Jeffrey D Palumbo et al. Lett Appl Microbiol. .

Abstract

Populations of ochratoxin-producing Aspergillus section Circumdati species and aflatoxin-producing Aspergillus section Flavi species frequently coexist in soil and are the main sources of mycotoxin contamination of tree nuts. Identification of mycotoxigenic Aspergillus species in these sections is difficult using traditional isolation and culture methods. We developed a multiplex digital PCR (dPCR) assay to detect and quantify Aspergillus ochraceus, Aspergillus westerdijkiae, and Aspergillus steynii (section Circumdati), as well as Aspergillus flavus and Aspergillus parasiticus (section Flavi), in environmental samples based on species-specific calmodulin gene sequences. Relative quantification of each species by dPCR of mixed-species templates correlated with corresponding DNA input ratios. Target species could be detected in soil inoculated with conidia from each species. Non-target species of sections Circumdati, Flavi, and Nigri were generally not detectable using this dPCR method. Detected non-target species (Aspergillus fresenii, Aspergillus melleus, Aspergillus sclerotiorum, and Aspergillus subramanianii) were discernible from A. ochraceus in dual-template dPCR reactions based on differential fluorescence intensity.

Keywords: aflatoxins; fungal ecology; ochratoxins; quantitative digital PCR.

PubMed Disclaimer