Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence-the Novel Biomarkers in Breast Cancer Immune Microenvironment
- PMID: 38111330
- PMCID: PMC10734346
- DOI: 10.1177/15330338231218227
Radiomic Models Predict Tumor Microenvironment Using Artificial Intelligence-the Novel Biomarkers in Breast Cancer Immune Microenvironment
Abstract
Breast cancer is the most common malignancy in women, and some subtypes are associated with a poor prognosis with a lack of efficacious therapy. Moreover, immunotherapy and the use of other novel antibody‒drug conjugates have been rapidly incorporated into the standard management of advanced breast cancer. To extract more benefit from these therapies, clarifying and monitoring the tumor microenvironment (TME) status is critical, but this is difficult to accomplish based on conventional approaches. Radiomics is a method wherein radiological image features are comprehensively collected and assessed to build connections with disease diagnosis, prognosis, therapy efficacy, the TME, etc In recent years, studies focused on predicting the TME using radiomics have increasingly emerged, most of which demonstrate meaningful results and show better capability than conventional methods in some aspects. Beyond predicting tumor-infiltrating lymphocytes, immunophenotypes, cytokines, infiltrating inflammatory factors, and other stromal components, radiomic models have the potential to provide a completely new approach to deciphering the TME and facilitating tumor management by physicians.
Keywords: biomarker; breast cancer; immunotherapy; radiological images; radiomics; tumor microenvironment.
Conflict of interest statement
Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Figures



References
-
- Hylton N. Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol. 2006;24(20):3293‐3298. - PubMed
-
- García-Figueiras R, Baleato-González S, Luna A, et al. Assessing immunotherapy with functional and molecular imaging and radiomics. RadioGraphics. 2020;40(7):1987‐2010. - PubMed
-
- Marin Z, Batchelder KA, Toner BC, et al. Mammographic evidence of microenvironment changes in tumorous breasts. Med Phys. 2017;44(4):1324‐1336. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources