Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar 15:658:354-361.
doi: 10.1016/j.jcis.2023.12.071. Epub 2023 Dec 13.

Particle dispersion governs nano to bulk dynamics for tailored nanocomposite design

Affiliations

Particle dispersion governs nano to bulk dynamics for tailored nanocomposite design

Ivanna Colijn et al. J Colloid Interface Sci. .

Abstract

Nanoparticle addition can expand bioplastic use, as the resultant nanocomposite features e.g., improved mechanical properties.

Hypothesis: It is generally hypothesised that the nanoparticle-polymer interaction strength is pivotal to reduce polymer dynamics within the interphasial region and beyond.

Experiments: Translating nanoscale phenomena to bulk properties is challenging, as traditional techniques that probe interphasial dynamics are limited to well-dispersed systems. Laser speckle imaging (LSI) enabled us to probe interphasial nanoscale dynamics of samples containing aggregated nanoparticles. We relate these LSI-derived relaxation times to bulk rheological properties at a micro scale.

Findings: Nanocomposites with well-dispersed PDMS-coated titanium dioxide nanoparticles of ∼100 nm showed higher viscosities than nanocomposites containing aggregated PVP- and PAA-coated nanoparticles of 200-2000 nm. Within the interphasial region, nanoparticle addition increased relaxation times by a factor 101-102, reaching ultraslow relaxations of ∼103 s. While the viscosity increased upon nanoparticle loading, interphasial relaxation times plateaued at 5 wt% for nanocomposites containing well-dispersed nanoparticles and 10 wt% for nanocomposites containing aggregated nanoparticles. Likely, interphasial regions between nanoparticles interact, which is more prominent in systems with well-dispersed nanoparticles and at higher loadings. Our results highlight that, contrary to general belief, nanoparticle dispersion seems of greater importance for mechanical reinforcement than the interaction between polymer and particle.

Keywords: Biopolymers; Interphasial region; Laser speckle imaging; Nanocomposites; Polymer dynamics; Viscosity.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources