Mechanical properties change of immobilized skeletal muscle in short position measured by shear wave elastography and pure shearing test
- PMID: 38118374
- DOI: 10.1016/j.jmbbm.2023.106317
Mechanical properties change of immobilized skeletal muscle in short position measured by shear wave elastography and pure shearing test
Abstract
The purpose of this study was to evaluate the effects of immobilization on mechanical properties of skeletal muscle over the time. An in vivo rat model was used to investigate the shear modulus change of the flexor carpi ulnaris (FCU) in a short position. Measurements were performed by shear wave elastography (SWE) to compare contralateral and immobilized cases. The results showed a significant increase of 18.1% (p = 3.86. 10-7) in the shear modulus of immobilized skeletal muscle after two weeks (D14) when compared with the contralateral case. For the purposes of comparison, in vitro mechanical pure shearing tests were performed on samples collected from the skeletal muscles of the same rats. Although the difference between contralateral and immobilized cases was 17.6% (p = 0.32) at D14, the shear modulus difference was 35.7% (p = 0.0126 and p = 1.57.10-5 for immobilization and contralateral respectively) between in vivo and in vitro approaches. The mechanical properties changes were then correlated with the density of collagen from histological analysis, and it was shown that the contralateral collagen surface density was 25.4% higher than the immobilized density at D14 (p = 0.001). Thus, the results showed the feasibility of the comparison between the two approaches, which can surely be improved by optimizing the experimental protocols.
Keywords: Immobilization; Pure shearing test; Shear wave elastography; Skeletal muscle; Stiffness change.
Copyright © 2023. Published by Elsevier Ltd.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources