Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Feb;252(2 Pt 2):F226-31.
doi: 10.1152/ajprenal.1987.252.2.F226.

Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane

Presence of multiple sodium-dependent phosphate transport processes in proximal brush-border membrane

J J Walker et al. Am J Physiol. 1987 Feb.

Abstract

Renal brush-border membrane phosphate transport was studied in early and late segments of the pig proximal tubule. Vesicles were prepared from early proximal tubules (outer cortical tissue) and late proximal tubules (outer medullary tissue). Sodium-dependent phosphate uptake into brush-border membrane vesicles was determined using voltage clamp at 5-6 s, 21 degrees C. Sodium-dependent D-glucose uptake was determined to verify the cortical and medullary tissue cuts. At pH 8.0 (pHi = pHo), two sodium-dependent phosphate transport systems were evident in the early proximal tubule: a high-affinity system [Km, 0.06 +/- 0.01 mM; maximal transport activity (Vmax), 3.6 +/- 1.1 nmol X mg protein-1 X min-1] and a low-affinity system (Km, 4.11 +/- 0.02 mM; Vmax, 9.7 +/- 0.7 nmol X mg protein-1 X min-1). In the late proximal tubule at pH 8.0, only a single high-affinity transport process (Km, 0.19 +/- 0.7 mM; Vmax, 3.4 +/- 0.5 nmol X mg protein-1 X min-1) was evident. D-Glucose kinetics at pH 7.0 revealed both a high-affinity (Km, 0.55 +/- 0.09 mM) and a low-affinity (Km, 20.09 +/- 1.39 mM) system in the early proximal segment and a single high-affinity (Km, 1.27 +/- 0.36 mM) process in the late segment. These data suggest that two systems, distinct in their affinities and capacities, are involved in both D-glucose and phosphate transport across the brush-border membrane of the early proximal tubule, but that only a single high-affinity system is present in the late segment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources